计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2013年
9期
57-60
,共4页
煤自燃%邻域粗糙集%最小二乘法%球形支持向量机
煤自燃%鄰域粗糙集%最小二乘法%毬形支持嚮量機
매자연%린역조조집%최소이승법%구형지지향량궤
Coal spontaneous combustion%Neighbourhood rough set%Least square method%Spherical support vector machine
引入模糊隶属度和最小二乘思想,采用邻域粗糙集方法对煤自燃预测的输入向量进行维数约简和粒子群优化( PSO)算法优化支持向量机模型中的参数,提出一种模糊最小二乘球形支持向量机(FLHSSVM),并用序贯最小化(SMO)算法求解FLHSSVM中的二次规划问题,建立煤自燃预测模型。实验结果表明,该方法有效简化了训练样本,提高了FLHSSVM训练速度,且分类精度良好,有很好的泛化能力。
引入模糊隸屬度和最小二乘思想,採用鄰域粗糙集方法對煤自燃預測的輸入嚮量進行維數約簡和粒子群優化( PSO)算法優化支持嚮量機模型中的參數,提齣一種模糊最小二乘毬形支持嚮量機(FLHSSVM),併用序貫最小化(SMO)算法求解FLHSSVM中的二次規劃問題,建立煤自燃預測模型。實驗結果錶明,該方法有效簡化瞭訓練樣本,提高瞭FLHSSVM訓練速度,且分類精度良好,有很好的汎化能力。
인입모호대속도화최소이승사상,채용린역조조집방법대매자연예측적수입향량진행유수약간화입자군우화( PSO)산법우화지지향량궤모형중적삼수,제출일충모호최소이승구형지지향량궤(FLHSSVM),병용서관최소화(SMO)산법구해FLHSSVM중적이차규화문제,건립매자연예측모형。실험결과표명,해방법유효간화료훈련양본,제고료FLHSSVM훈련속도,차분류정도량호,유흔호적범화능력。
In this paper we introduce fuzzy membership and least squares method , adopt neighbourhood rough set method to reduce the dimensions of input vectors of the coal spontaneous combustion , and use particle swarm optimisation ( PSO ) algorithm to optimise the parameters of support vector machine (SVM) model.Then we present a fuzzy least square spherical support vector machine (FLHSSVM), use sequential minimise optimisation ( SMO ) method to solve the quadratic programming problem in FLHSSVM , and establish a coal spontaneous combustion forecast model .Experimental results show that this method effectively simplifies the training sample , enhances the training speed of FLHSSVM , and has refined classification accuracy , it well proves the generalisation capability .