计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2013年
9期
21-24,127
,共5页
网络流量预测%最小二乘支持向量机%自适应粒子群%参数优化%迭代求解
網絡流量預測%最小二乘支持嚮量機%自適應粒子群%參數優化%迭代求解
망락류량예측%최소이승지지향량궤%자괄응입자군%삼수우화%질대구해
Network traffic prediction%LSSVM%Adaptive particle swarm optimisation%Parameter optimisation%Iterative solution
针对带混沌特性的网络流量在线预测,提出一种融合自适应粒子群算法( APSO)和递推式最小二乘支持向量机回归的流量模型。对流量序列嵌入重构得到多维状态输入矢量,将其作为初始LSSVM的训练样本,其中采用自适应粒子群算法对模型的特征参数、嵌入维数寻优,避免早熟停滞。对于在线预报过程中的吸收样本、删减样本采用核矩阵迭代式求解,动态调整回归机,使得模型具有在线学习能力,由此得APSO-LSSVM在线流量预测模型,并考察网络负荷度与嵌入维数关系。仿真实验表明:该方法能有效预测网络流量,实现较高精度实时流量估计。
針對帶混沌特性的網絡流量在線預測,提齣一種融閤自適應粒子群算法( APSO)和遞推式最小二乘支持嚮量機迴歸的流量模型。對流量序列嵌入重構得到多維狀態輸入矢量,將其作為初始LSSVM的訓練樣本,其中採用自適應粒子群算法對模型的特徵參數、嵌入維數尋優,避免早熟停滯。對于在線預報過程中的吸收樣本、刪減樣本採用覈矩陣迭代式求解,動態調整迴歸機,使得模型具有在線學習能力,由此得APSO-LSSVM在線流量預測模型,併攷察網絡負荷度與嵌入維數關繫。倣真實驗錶明:該方法能有效預測網絡流量,實現較高精度實時流量估計。
침대대혼돈특성적망락류량재선예측,제출일충융합자괄응입자군산법( APSO)화체추식최소이승지지향량궤회귀적류량모형。대류량서렬감입중구득도다유상태수입시량,장기작위초시LSSVM적훈련양본,기중채용자괄응입자군산법대모형적특정삼수、감입유수심우,피면조숙정체。대우재선예보과정중적흡수양본、산감양본채용핵구진질대식구해,동태조정회귀궤,사득모형구유재선학습능력,유차득APSO-LSSVM재선류량예측모형,병고찰망락부하도여감입유수관계。방진실험표명:해방법능유효예측망락류량,실현교고정도실시류량고계。
For online prediction of network traffic with chaos characteristics , a new network traffic prediction model based on adaptive par-ticle swarm optimisation algorithm (APSO) and recursive least square support vector machine (LSSVM) is proposed.First, the network traf-fic sequence is conducted the embedment and reconstruction to acquire multidimensional states input vectors , and they are used as the initial training sample of LSSVM .The adaptive particle swarm optimisation is used to optimise the characteristic parameters and the embedded di -mensions of the model for avoiding premature stagnation .At last, the iterative expression of kernel matrix is adopted in solution of absorption and deduction of the samples in online prediction process , thus to dynamically adjust the regression machine and have the model possesses on -line learning ability.In this way, the online APSO-LSSVM network traffic prediction model is formed , and then it need to explore the relation-ship between the network load and the dimensions embedded as well .Simulation experiment shows that the APSO-LSSVM model is able to predict network traffic effectively and get higher accuracy in real time traffic estimation .