信息技术
信息技術
신식기술
INFORMATION TECHNOLOGY
2014年
7期
158-162
,共5页
决策树%小波变换%网络流量
決策樹%小波變換%網絡流量
결책수%소파변환%망락류량
decision tree%wavelet transform%network traffic
为有效定位识别和提取网络流量序列的暂态性异常特征,针对网络异常流量特征扰动性和暂态性特点,提出一种基于小波分解的二叉分类回归决策树主分量特征优化跟踪特征提取算法.利用训练集建立决策树模型,采用二叉分类回归决策树模型进行主分量特征优化跟踪建模,利用双正交提升小波分解得到的各层细节信号对暂态性扰动特征的敏感性,通过小波分解得到各层细节信号,将提取的小波分层细节信号的奇异值分解特征再返回到决策树主分量特征优化跟踪模型中,实现网络流量异常特征的定位提取和识别.仿真实验表明,改进算法的抗干扰能力和分辨率提高显著,暂态性异常特征谱图分辨能力提高,异常特征分布谱清晰可见,展示了较好的特征提取和状态识别性能.
為有效定位識彆和提取網絡流量序列的暫態性異常特徵,針對網絡異常流量特徵擾動性和暫態性特點,提齣一種基于小波分解的二扠分類迴歸決策樹主分量特徵優化跟蹤特徵提取算法.利用訓練集建立決策樹模型,採用二扠分類迴歸決策樹模型進行主分量特徵優化跟蹤建模,利用雙正交提升小波分解得到的各層細節信號對暫態性擾動特徵的敏感性,通過小波分解得到各層細節信號,將提取的小波分層細節信號的奇異值分解特徵再返迴到決策樹主分量特徵優化跟蹤模型中,實現網絡流量異常特徵的定位提取和識彆.倣真實驗錶明,改進算法的抗榦擾能力和分辨率提高顯著,暫態性異常特徵譜圖分辨能力提高,異常特徵分佈譜清晰可見,展示瞭較好的特徵提取和狀態識彆性能.
위유효정위식별화제취망락류량서렬적잠태성이상특정,침대망락이상류량특정우동성화잠태성특점,제출일충기우소파분해적이차분류회귀결책수주분량특정우화근종특정제취산법.이용훈련집건립결책수모형,채용이차분류회귀결책수모형진행주분량특정우화근종건모,이용쌍정교제승소파분해득도적각층세절신호대잠태성우동특정적민감성,통과소파분해득도각층세절신호,장제취적소파분층세절신호적기이치분해특정재반회도결책수주분량특정우화근종모형중,실현망락류량이상특정적정위제취화식별.방진실험표명,개진산법적항간우능력화분변솔제고현저,잠태성이상특정보도분변능력제고,이상특정분포보청석가견,전시료교호적특정제취화상태식별성능.