计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2013年
7期
288-292
,共5页
半监督学习%高光谱遥感%分类%线性邻域传播%加权K近邻%流形学习
半鑑督學習%高光譜遙感%分類%線性鄰域傳播%加權K近鄰%流形學習
반감독학습%고광보요감%분류%선성린역전파%가권K근린%류형학습
semi-supervised learning%hyperspectral remote sensing%classification%Linear Neighborhood Propagation(LNP)%Weighted K-nearest Neighbor(WKNN)%manifold learning
为提高高光谱遥感影像在训练样本不足时的分类精度,提出一种基于线性邻域传播的改进加权K近邻算法。采用线性邻域传播(LNP)算法获取无标签数据属于各类别的概率,将其作为类别信息,以增加训练样本数量,提高K近邻算法的分类效果,并降低错误分类带来的风险。实验结果表明,对于高光谱遥感影像,该算法具有较好的分类效果,优于传统的KNN算法、距离加权KNN算法以及LNP等半监督分类算法。
為提高高光譜遙感影像在訓練樣本不足時的分類精度,提齣一種基于線性鄰域傳播的改進加權K近鄰算法。採用線性鄰域傳播(LNP)算法穫取無標籤數據屬于各類彆的概率,將其作為類彆信息,以增加訓練樣本數量,提高K近鄰算法的分類效果,併降低錯誤分類帶來的風險。實驗結果錶明,對于高光譜遙感影像,該算法具有較好的分類效果,優于傳統的KNN算法、距離加權KNN算法以及LNP等半鑑督分類算法。
위제고고광보요감영상재훈련양본불족시적분류정도,제출일충기우선성린역전파적개진가권K근린산법。채용선성린역전파(LNP)산법획취무표첨수거속우각유별적개솔,장기작위유별신식,이증가훈련양본수량,제고K근린산법적분류효과,병강저착오분류대래적풍험。실험결과표명,대우고광보요감영상,해산법구유교호적분류효과,우우전통적KNN산법、거리가권KNN산법이급LNP등반감독분류산법。
To improve the classification accuracy of hyperspectral remote sensing image when lack of training data, this paper proposes a Weighted K-nearest Neighbor(WKNN) algorithm based on Linear Neighborhood Propagation(LNP). In order to increase the number of training data and improve the classification accuracy, it obtains the unlabeled datas’ probability for each class by LNP algorithm. By this, it can drop the misclassification risk of LNP. Experimental results show that this algorithm has a better performance than other supervised classification algorithms like K-nearest Neighbor(KNN) algorithm, distance WKNN algorithm, and LNP semi-supervised classification algorithm.