红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
8期
2197-2201
,共5页
光纤惯导系统%初始对准%Sage_Husa自适应卡尔曼滤波%非线性
光纖慣導繫統%初始對準%Sage_Husa自適應卡爾曼濾波%非線性
광섬관도계통%초시대준%Sage_Husa자괄응잡이만려파%비선성
fiber-optic initial navigation system%initial alignment%Sage_Husa adaptive kalman filter%nonlinear
由于光纤惯导系统导航精度不高,方位角常为大角度,因此系统初始对准的滤波方程为非线性的,为改善非线性模型下初始对准的精度,提出了一种改进Sage_Husa自适应卡尔曼滤波方法并应用于光纤惯导系统初始对准中。建立了大方位失准角初始对准的非线性误差模型,给出了Sage_Husa自适应卡尔曼滤波方程,对Sage_Husa自适应卡尔曼滤波不适合用在非线性滤波的缺陷进行了改进,建立系统噪声统计的估值器,对非线性误差方程进行了改进Sage_Husa自适应卡尔曼滤波仿真。仿真结果表明:改进Sage_Husa自适应卡尔曼滤波能够很好地处理初始对准中的非线性问题,提高初始对准精度,方位失准角误差估计精度较EKF提高27%。
由于光纖慣導繫統導航精度不高,方位角常為大角度,因此繫統初始對準的濾波方程為非線性的,為改善非線性模型下初始對準的精度,提齣瞭一種改進Sage_Husa自適應卡爾曼濾波方法併應用于光纖慣導繫統初始對準中。建立瞭大方位失準角初始對準的非線性誤差模型,給齣瞭Sage_Husa自適應卡爾曼濾波方程,對Sage_Husa自適應卡爾曼濾波不適閤用在非線性濾波的缺陷進行瞭改進,建立繫統譟聲統計的估值器,對非線性誤差方程進行瞭改進Sage_Husa自適應卡爾曼濾波倣真。倣真結果錶明:改進Sage_Husa自適應卡爾曼濾波能夠很好地處理初始對準中的非線性問題,提高初始對準精度,方位失準角誤差估計精度較EKF提高27%。
유우광섬관도계통도항정도불고,방위각상위대각도,인차계통초시대준적려파방정위비선성적,위개선비선성모형하초시대준적정도,제출료일충개진Sage_Husa자괄응잡이만려파방법병응용우광섬관도계통초시대준중。건립료대방위실준각초시대준적비선성오차모형,급출료Sage_Husa자괄응잡이만려파방정,대Sage_Husa자괄응잡이만려파불괄합용재비선성려파적결함진행료개진,건립계통조성통계적고치기,대비선성오차방정진행료개진Sage_Husa자괄응잡이만려파방진。방진결과표명:개진Sage_Husa자괄응잡이만려파능구흔호지처리초시대준중적비선성문제,제고초시대준정도,방위실준각오차고계정도교EKF제고27%。
The azimuth was often a large angle because navigation accuracy of fiber-optic inertial navigation system was not high, and the filtering equations of initial alignment were non-linear. In order to improve the initial alignment accuracy of nonlinear models, a improved Sage_Husa adaptive kalman filtering method was put forward, and applied to initial alignment of fiber-optic inertial navigation system. Established initial alignment nonlinear model of large azimuth misalignment angle, contributed the system noise statistics estimators, and used improved Sage_Husa adaptive kalman filtering to simulate for nonlinear error equations. The simulation results show that the improved Sage_Husa adaptive kalman filtering could deal with nonlinear problems, improve the accuracy of initial alignment. Azimuth misalignment angle error estimation precision improved 27% than EKF.