电镀与涂饰
電鍍與塗飾
전도여도식
ELECTROPLATING & FINISHING
2013年
8期
64-67
,共4页
程准%曾鹏%谢光荣%雷敏娟
程準%曾鵬%謝光榮%雷敏娟
정준%증붕%사광영%뢰민연
硅烷%鳞片锌粉%复合涂层%低碳钢%耐蚀性
硅烷%鱗片鋅粉%複閤塗層%低碳鋼%耐蝕性
규완%린편자분%복합도층%저탄강%내식성
silane%flake zinc powder%composite coating%mild steel%corrosion resistance
通过电导率监视仪对硅烷的水解过程进行监控,确定了KH560的水解时间为3 h,含不同质量分数鳞片锌粉的硅烷/锌复合液的水解时间为12 h。将硅烷/锌水解液涂覆到低碳钢表面,制备了复合硅烷/锌涂层。通过盐雾试验、极化曲线和交流阻抗谱研究了不同锌粉含量的硅烷/锌复合涂层的耐蚀性能,通过扫描电镜观察了涂层的截面形貌,探讨了硅烷/锌复合涂层的耐蚀机理。结果表明,复合硅烷/锌涂层的耐蚀性能随着锌粉含量的增加而提高,鳞片锌粉的最大添加量为45%。此含量下的复合硅烷/锌涂层的耐蚀性能最好,中性盐雾时间达576 h,是纯硅烷涂层的12倍。在此硅烷/锌复合涂层中,鳞片锌粉以平行叠加的方式组成致密的网状结构,从而延长了腐蚀性介质到达金属基材的时间,使涂层的耐蚀性能得到明显提高。
通過電導率鑑視儀對硅烷的水解過程進行鑑控,確定瞭KH560的水解時間為3 h,含不同質量分數鱗片鋅粉的硅烷/鋅複閤液的水解時間為12 h。將硅烷/鋅水解液塗覆到低碳鋼錶麵,製備瞭複閤硅烷/鋅塗層。通過鹽霧試驗、極化麯線和交流阻抗譜研究瞭不同鋅粉含量的硅烷/鋅複閤塗層的耐蝕性能,通過掃描電鏡觀察瞭塗層的截麵形貌,探討瞭硅烷/鋅複閤塗層的耐蝕機理。結果錶明,複閤硅烷/鋅塗層的耐蝕性能隨著鋅粉含量的增加而提高,鱗片鋅粉的最大添加量為45%。此含量下的複閤硅烷/鋅塗層的耐蝕性能最好,中性鹽霧時間達576 h,是純硅烷塗層的12倍。在此硅烷/鋅複閤塗層中,鱗片鋅粉以平行疊加的方式組成緻密的網狀結構,從而延長瞭腐蝕性介質到達金屬基材的時間,使塗層的耐蝕性能得到明顯提高。
통과전도솔감시의대규완적수해과정진행감공,학정료KH560적수해시간위3 h,함불동질량분수린편자분적규완/자복합액적수해시간위12 h。장규완/자수해액도복도저탄강표면,제비료복합규완/자도층。통과염무시험、겁화곡선화교류조항보연구료불동자분함량적규완/자복합도층적내식성능,통과소묘전경관찰료도층적절면형모,탐토료규완/자복합도층적내식궤리。결과표명,복합규완/자도층적내식성능수착자분함량적증가이제고,린편자분적최대첨가량위45%。차함량하적복합규완/자도층적내식성능최호,중성염무시간체576 h,시순규완도층적12배。재차규완/자복합도층중,린편자분이평행첩가적방식조성치밀적망상결구,종이연장료부식성개질도체금속기재적시간,사도층적내식성능득도명현제고。
The hydrolysis process of silane was monitored by a on-line conductivity monitor. The hydrolysis time was determined as 3 h for KH560 and 12 h for silane/zinc composite solutions with different mass fractions of flake zinc powder. A silane/zinc composite coating was prepared by coating the hydrolyzed silane/zinc composite solution on mild steel surface. The corrosion resistance of the composite coatings with different contents of zinc powders was examined by salt spray test, polarization curve measurement, and AC impedance spectroscopy. The section morphologies of the coatings were observed by scanning electron microscopy. The anticorrosion mechanism of silane/zinc composite coating was discussed. The results showed that the corrosion resistance of silane/zinc composite coating is improved with increasing content of zinc powder, and reaches the best when the content of flake zinc powders is up to 45%. The coating obtained therewith endured 576 h in neutral salt spray test, which was 12 times that of the coating without zinc powder. The flake zinc powders form a compact network structure by superposing parallel, leading to slower pass of corrosion media to metal substrate, thus remarkably improving the corrosion resistance.