红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
9期
2370-2374
,共5页
许兆美%刘永志%杨刚%王庆安
許兆美%劉永誌%楊剛%王慶安
허조미%류영지%양강%왕경안
激光铣削%粒子群算法%BP神经网络%优化算法
激光鐉削%粒子群算法%BP神經網絡%優化算法
격광선삭%입자군산법%BP신경망락%우화산법
laser milling%particle swarm optimization(PSO)%BP network%optimization algorithm
为了有效地控制激光铣削层质量,建立了激光铣削层质量(铣削层宽度、铣削层深度)与铣削层参数(激光功率、扫描速度和离焦量)的BP神经网络预测模型。采用粒子群算法优化了BP神经网络的权值和阈值,构建了基于粒子群神经网络的质量预测模型。所提出的PSO-BP算法解决了一般BP算法迭代速度慢,且易出现局部最优的问题,并以Al2O3陶瓷激光铣削质量预测为例,进行算法实现。仿真结果表明:提出的PSO-BP算法迭代次数大大减少,且预测误差明显减少。所构建的质量预测模型具有较高的预测精度和实用价值。
為瞭有效地控製激光鐉削層質量,建立瞭激光鐉削層質量(鐉削層寬度、鐉削層深度)與鐉削層參數(激光功率、掃描速度和離焦量)的BP神經網絡預測模型。採用粒子群算法優化瞭BP神經網絡的權值和閾值,構建瞭基于粒子群神經網絡的質量預測模型。所提齣的PSO-BP算法解決瞭一般BP算法迭代速度慢,且易齣現跼部最優的問題,併以Al2O3陶瓷激光鐉削質量預測為例,進行算法實現。倣真結果錶明:提齣的PSO-BP算法迭代次數大大減少,且預測誤差明顯減少。所構建的質量預測模型具有較高的預測精度和實用價值。
위료유효지공제격광선삭층질량,건립료격광선삭층질량(선삭층관도、선삭층심도)여선삭층삼수(격광공솔、소묘속도화리초량)적BP신경망락예측모형。채용입자군산법우화료BP신경망락적권치화역치,구건료기우입자군신경망락적질량예측모형。소제출적PSO-BP산법해결료일반BP산법질대속도만,차역출현국부최우적문제,병이Al2O3도자격광선삭질량예측위례,진행산법실현。방진결과표명:제출적PSO-BP산법질대차수대대감소,차예측오차명현감소。소구건적질량예측모형구유교고적예측정도화실용개치。
In order to effectively control the quality of laser milling layer, BP neural network model was established between the laser milling quality of layer (the milling layer width, milling depth) and the milling layer parameters (laser power, scanning speed and defocus amount). Using particle swarm optimization (PSO)BP neural network weights and thresholds, quality prediction model based on particle swarm neural network was built. The proposed PSO-BP algorithm solve the problem that the general BP algorithm iteration speed was slow, and prone to local optimum . Al2O3 ceramics laser milling quality prediction model was taben to realize the algorithm.The simulation results show that the number of iterations of proposed PSO-BP algorithm, and the prediction error are greatly reduced. The built quality prediction model has high prediction accuracy and practical value.