电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2013年
10期
2371-2377
,共7页
图像处理%压缩感知%小波包%数学期望%信息熵
圖像處理%壓縮感知%小波包%數學期望%信息熵
도상처리%압축감지%소파포%수학기망%신식적
Image processing%Compressed Sensing (CS)%Wavelet packet%Mathematical expectation%Information entropy
该文提出一种自适应小波包图像压缩感知方法。该方法选用小波包变换分解图像,基于数学期望和信息熵分析各个小波包系数块的属性,自适应地将其划分为低频信号、无价值信号、特殊处理信号和压缩感知处理信号等4种信号类型,再针对不同的信号类型设计对应的处理方法,适应不同特征的图像。通过此种方法,在图像压缩感知过程中,可以根据不同图像和小波包系数块自适应地选取采样值,来提高压缩感知质量。实验结果表明该文提出的自适应小波包图像压缩感知方法在相同采样值的前提下,不仅提高了图像的重构质量,同时也降低了算法的计算复杂度和所需存储空间。
該文提齣一種自適應小波包圖像壓縮感知方法。該方法選用小波包變換分解圖像,基于數學期望和信息熵分析各箇小波包繫數塊的屬性,自適應地將其劃分為低頻信號、無價值信號、特殊處理信號和壓縮感知處理信號等4種信號類型,再針對不同的信號類型設計對應的處理方法,適應不同特徵的圖像。通過此種方法,在圖像壓縮感知過程中,可以根據不同圖像和小波包繫數塊自適應地選取採樣值,來提高壓縮感知質量。實驗結果錶明該文提齣的自適應小波包圖像壓縮感知方法在相同採樣值的前提下,不僅提高瞭圖像的重構質量,同時也降低瞭算法的計算複雜度和所需存儲空間。
해문제출일충자괄응소파포도상압축감지방법。해방법선용소파포변환분해도상,기우수학기망화신식적분석각개소파포계수괴적속성,자괄응지장기화분위저빈신호、무개치신호、특수처리신호화압축감지처리신호등4충신호류형,재침대불동적신호류형설계대응적처리방법,괄응불동특정적도상。통과차충방법,재도상압축감지과정중,가이근거불동도상화소파포계수괴자괄응지선취채양치,래제고압축감지질량。실험결과표명해문제출적자괄응소파포도상압축감지방법재상동채양치적전제하,불부제고료도상적중구질량,동시야강저료산법적계산복잡도화소수존저공간。
An adaptive wavelet packet image compressed sensing is proposed, in which the wavelet packet transform is used to decompose the image. After the image is decomposed, the properties of each packet wavelet block are analyzed with the introduction of mathematical expectation and information entropy. According to the characteristic of each packet wavelet block, the signals are classified to four types of signal, that is the low frequency signal, no value signal, special processing signal and compressed sensing processing signal adaptively. Then the corresponding methods are designed to deal with different types of signal, which can adapt to the different characteristic of images. In this method, the quality of compressed sensing is improved, which is because sampling numbers can be adaptively selected according to different images and packet wavelet blocks. Experimental results show that, when the sampling number is the same, the proposed algorithm can not only greatly improve the reconstruction quality of image, but also reduce the computational complexity and required memory.