中国组织工程研究
中國組織工程研究
중국조직공정연구
Journal of Clinical Rehabilitative Tissue Engineering Research
2013年
43期
7571-7580
,共10页
余华%李少星%赵长义%闫金成
餘華%李少星%趙長義%閆金成
여화%리소성%조장의%염금성
骨关节植入物%数字化骨科%胫骨远端关节面缺损%有限元分析%踝关节%生物力学%Pilon骨折
骨關節植入物%數字化骨科%脛骨遠耑關節麵缺損%有限元分析%踝關節%生物力學%Pilon骨摺
골관절식입물%수자화골과%경골원단관절면결손%유한원분석%과관절%생물역학%Pilon골절
tibial fractures%ankle joint%finite element analysis%biomechanics%computer-assisted
背景:采用有限元分析法进行骨与关节的生物力学研究得到了广泛应用,但是关于胫骨远端关节面缺损有限元分析,国内外少见关于此类的报道。目的:建立踝关节的三维有限元模型,制作胫骨远端关节面不同面积的缺损,并模拟在不同位相下胫骨远端关节面发生形变、位移情况,预测胫骨远端关节面缺损的最大允许程度和探讨踝关节创伤性关节炎的力学发病机制。方法:通过对1名正常成年男性踝关节的多排螺旋 CT扫描,获得连续断层图片,导入Mimics 医学建模软件生成实体模型后,应用大型通用有限元分析软件 ANSYS13.0进行网格划分、材料属性赋值生成有限元模型。约束边界条件,模拟踝关节远端轴向受力,得出在不同位相下胫骨远端关节面有限元模型上的应力分布与位移结果。结果与结论:建立人体踝关节有限元模型总单元数为157990,总节点数为193801。3个位相,都是随着胫骨远端缺损面积的增大,接触面积逐渐减小,尤其是跖屈位在缺损直径13 mm的面积时,变化最为明显;3个位相的接触面积,在中立位接触面积最大;在中立位和背屈位都是随着胫骨远端关节面缺损面积的增大,应力峰值逐渐增大,都是在11-13 mm以后应力峰值明显增大;在中立位和背屈10°位,主要集中在后内和后外象限;在跖屈10°位,变化比较复杂,在11-13 mm,随着缺损面积的增大应力峰值变化明显增大,到13 mm应力峰值达到最大值。所以,胫骨远端关节面的最大缺损直径可认为是11-13 mm。胫骨远端关节软骨及骨床缺损直径超过11-13 mm的圆面积,关节功能将受到影响。
揹景:採用有限元分析法進行骨與關節的生物力學研究得到瞭廣汎應用,但是關于脛骨遠耑關節麵缺損有限元分析,國內外少見關于此類的報道。目的:建立踝關節的三維有限元模型,製作脛骨遠耑關節麵不同麵積的缺損,併模擬在不同位相下脛骨遠耑關節麵髮生形變、位移情況,預測脛骨遠耑關節麵缺損的最大允許程度和探討踝關節創傷性關節炎的力學髮病機製。方法:通過對1名正常成年男性踝關節的多排螺鏇 CT掃描,穫得連續斷層圖片,導入Mimics 醫學建模軟件生成實體模型後,應用大型通用有限元分析軟件 ANSYS13.0進行網格劃分、材料屬性賦值生成有限元模型。約束邊界條件,模擬踝關節遠耑軸嚮受力,得齣在不同位相下脛骨遠耑關節麵有限元模型上的應力分佈與位移結果。結果與結論:建立人體踝關節有限元模型總單元數為157990,總節點數為193801。3箇位相,都是隨著脛骨遠耑缺損麵積的增大,接觸麵積逐漸減小,尤其是蹠屈位在缺損直徑13 mm的麵積時,變化最為明顯;3箇位相的接觸麵積,在中立位接觸麵積最大;在中立位和揹屈位都是隨著脛骨遠耑關節麵缺損麵積的增大,應力峰值逐漸增大,都是在11-13 mm以後應力峰值明顯增大;在中立位和揹屈10°位,主要集中在後內和後外象限;在蹠屈10°位,變化比較複雜,在11-13 mm,隨著缺損麵積的增大應力峰值變化明顯增大,到13 mm應力峰值達到最大值。所以,脛骨遠耑關節麵的最大缺損直徑可認為是11-13 mm。脛骨遠耑關節軟骨及骨床缺損直徑超過11-13 mm的圓麵積,關節功能將受到影響。
배경:채용유한원분석법진행골여관절적생물역학연구득도료엄범응용,단시관우경골원단관절면결손유한원분석,국내외소견관우차류적보도。목적:건립과관절적삼유유한원모형,제작경골원단관절면불동면적적결손,병모의재불동위상하경골원단관절면발생형변、위이정황,예측경골원단관절면결손적최대윤허정도화탐토과관절창상성관절염적역학발병궤제。방법:통과대1명정상성년남성과관절적다배라선 CT소묘,획득련속단층도편,도입Mimics 의학건모연건생성실체모형후,응용대형통용유한원분석연건 ANSYS13.0진행망격화분、재료속성부치생성유한원모형。약속변계조건,모의과관절원단축향수력,득출재불동위상하경골원단관절면유한원모형상적응력분포여위이결과。결과여결론:건립인체과관절유한원모형총단원수위157990,총절점수위193801。3개위상,도시수착경골원단결손면적적증대,접촉면적축점감소,우기시척굴위재결손직경13 mm적면적시,변화최위명현;3개위상적접촉면적,재중립위접촉면적최대;재중립위화배굴위도시수착경골원단관절면결손면적적증대,응력봉치축점증대,도시재11-13 mm이후응력봉치명현증대;재중립위화배굴10°위,주요집중재후내화후외상한;재척굴10°위,변화비교복잡,재11-13 mm,수착결손면적적증대응력봉치변화명현증대,도13 mm응력봉치체도최대치。소이,경골원단관절면적최대결손직경가인위시11-13 mm。경골원단관절연골급골상결손직경초과11-13 mm적원면적,관절공능장수도영향。
BACKGROUND:Finite element analysis has been widely used for the research of bone and joint biomechanics, but the reports about finite element analysis of distal tibial articular surface defect are rare at home and abroad. OBJECTIVE:To establish ankle three-dimensional finite element model, produce distal tibial articular surface defects with different areas, and to simulate the distal tibial articular surface deformation and displacement under the different phases, thus predict the maximum al owable degree of distal tibial articular surface defect and explore the mechanics pathogenesis of ankle traumatic arthritis. METHODS:Continuous tomographic images were obtained by multi-slice spiral CT scan of a normal adult male ankle, and then the images were imported into the Mimics medicine modeling software to generate a entity model;the large general-purpose finite element analysis software ANSYS 13.0 was used for meshing, material property assignment and generating a finite element model. Restricted boundary conditions and simulated ankle distal end axial force, and then the stress distribution and displacement results of distal tibial articular surface in different phases were obtained. RESULTS AND CONCLUSION:The total number of units of the established finite element model of ankle joint was 157 990, and the total number of nodes was 193 801. On three phases, with the increase of the distal tibial defect area, the contact area was gradual y decreased, especial y in plantar flexion with the defect diameter of 13 mm, the change of the area was most obvious;The contact area of the neutral position was largest;with the increase of the distal tibial defect area in the neutral position and dorsiflexion, the peak stress was increased gradual y, and significantly increased after the diameter changed into 11-13 mm;in the neutral position and 10° of dorsiflexion, the peak stress mainly concentrated in the posteromedial and posterolateral quadrant;in 10° of plantar flexion, the change was complex, and when the diameter was 11-13 mm, the peak stress was increased gradual y with the increasing of defect area, when the diameter increased to 13 mm, the peak stress reached maximum. The maximum diameter of distal tibial articular surface defect was considered to be 11-13 mm. The joint function wil be affected when the diameter of distal tibial articular cartilage and bone bed defects was more than 11-13 mm.