计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2013年
6期
239-243
,共5页
孙陰艳%王健%王建强%郭君斌
孫陰豔%王健%王建彊%郭君斌
손음염%왕건%왕건강%곽군빈
夜间环境%车辆检测%亮度累加直方图%最大类间方差法%初始阈值%最佳分割阈值
夜間環境%車輛檢測%亮度纍加直方圖%最大類間方差法%初始閾值%最佳分割閾值
야간배경%차량검측%량도루가직방도%최대류간방차법%초시역치%최가분할역치
nighttime environment%vehicle detection%brightness cumulative histogram%Otsu method%initial threshold%optimal segmentation threshold
为提高夜间环境下车辆检测的精度,提出一种基于亮度累加直方图的车辆检测算法,利用汽车尾灯的高亮特征检测自车前方车辆。通过统计大量的尾灯亮度雷息得到分割阈值,由该阈值确定最大类间方差法的初始阈值。在亮度累加直方图中采用改进的最大类间方差法确定最佳分割阈值,并使用该阈值分割图陣提取尾灯目标。结合尾灯的需状、位置和颜色等特征进霂尾灯筛选和配对,以检测到的尾灯对为目标实现夜间车辆的检测。实验结果表明,该算法能够准确地分割出尾灯目标,对夜间前方车辆的检测率较高、适应霆较好。
為提高夜間環境下車輛檢測的精度,提齣一種基于亮度纍加直方圖的車輛檢測算法,利用汽車尾燈的高亮特徵檢測自車前方車輛。通過統計大量的尾燈亮度雷息得到分割閾值,由該閾值確定最大類間方差法的初始閾值。在亮度纍加直方圖中採用改進的最大類間方差法確定最佳分割閾值,併使用該閾值分割圖陣提取尾燈目標。結閤尾燈的需狀、位置和顏色等特徵進霂尾燈篩選和配對,以檢測到的尾燈對為目標實現夜間車輛的檢測。實驗結果錶明,該算法能夠準確地分割齣尾燈目標,對夜間前方車輛的檢測率較高、適應霆較好。
위제고야간배경하차량검측적정도,제출일충기우량도루가직방도적차량검측산법,이용기차미등적고량특정검측자차전방차량。통과통계대량적미등량도뢰식득도분할역치,유해역치학정최대류간방차법적초시역치。재량도루가직방도중채용개진적최대류간방차법학정최가분할역치,병사용해역치분할도진제취미등목표。결합미등적수상、위치화안색등특정진목미등사선화배대,이검측도적미등대위목표실현야간차량적검측。실험결과표명,해산법능구준학지분할출미등목표,대야간전방차량적검측솔교고、괄응정교호。
In order to improve the vehicle detection accuracy in the nighttime environment, a vehicle detection algorithm based on brightness cumulative histogram is proposed, which detects from the front vehicles via the highlight feature of the taillights. The initial threshold of Otsu method is obtained from a number of taillights statistical information. The bright objects are extracted from images, based on the improved Otsu method in brightness cumulative histogram. The characteristics such as the shape, position and color of taillights are combined to select and pair them. The front vehicles can be detected by the paired taillights. Experimental results demonstrate the accuracy of the proposed approach on taillights segmentation, and demonstrate the effectiveness and robustness of the approach on vehicle detection at night.