计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2013年
6期
205-209
,共5页
张艳%叶学义%汪云路%鲁国鹏
張豔%葉學義%汪雲路%魯國鵬
장염%협학의%왕운로%로국붕
隐写分析%边缘自适应隐写%LSB匹配改进算法%八方向绝对差分直方图%支持向量机
隱寫分析%邊緣自適應隱寫%LSB匹配改進算法%八方嚮絕對差分直方圖%支持嚮量機
은사분석%변연자괄응은사%LSB필배개진산법%팔방향절대차분직방도%지지향량궤
steganalysis%edge adaptive steganography%LSB Matching Revisited algorithm(LSBMR)%eight-direction absolute difference histogram%Support Vector Machine(SVM)
在图像边缘自适应LSB匹配改进隐写算法中,秘密信息嵌入位置的选择仅由某个方向上像素对的差值决定,未考虑该像素与其邻域内其他像素的差值变化的特点。针对该问题,对隐写前后图像的八方向差分直方图进行分析,提出一种基于LSB匹配改进算法(LSBMR)边缘自适应隐写检测的算法。该算法计算图像的八方向绝对差分直方图,提取直方图中隐写前后变化较为明显的频数用以构建特征向量,并使用支持向量机完成检测。对较低嵌入率下(≤0.5 bpp)的EALSBMR隐写结果进行检测,结果表明该算法的平均检测率均高于现有典型的隐写分析算法。
在圖像邊緣自適應LSB匹配改進隱寫算法中,祕密信息嵌入位置的選擇僅由某箇方嚮上像素對的差值決定,未攷慮該像素與其鄰域內其他像素的差值變化的特點。針對該問題,對隱寫前後圖像的八方嚮差分直方圖進行分析,提齣一種基于LSB匹配改進算法(LSBMR)邊緣自適應隱寫檢測的算法。該算法計算圖像的八方嚮絕對差分直方圖,提取直方圖中隱寫前後變化較為明顯的頻數用以構建特徵嚮量,併使用支持嚮量機完成檢測。對較低嵌入率下(≤0.5 bpp)的EALSBMR隱寫結果進行檢測,結果錶明該算法的平均檢測率均高于現有典型的隱寫分析算法。
재도상변연자괄응LSB필배개진은사산법중,비밀신식감입위치적선택부유모개방향상상소대적차치결정,미고필해상소여기린역내기타상소적차치변화적특점。침대해문제,대은사전후도상적팔방향차분직방도진행분석,제출일충기우LSB필배개진산법(LSBMR)변연자괄응은사검측적산법。해산법계산도상적팔방향절대차분직방도,제취직방도중은사전후변화교위명현적빈수용이구건특정향량,병사용지지향량궤완성검측。대교저감입솔하(≤0.5 bpp)적EALSBMR은사결과진행검측,결과표명해산법적평균검측솔균고우현유전형적은사분석산법。
Focusing on that the choice of embedding positions within a cover image during edge adaptive image steganography based on LSB Matching Revisited(EALSBMR) depends on the difference between two consecutive pixels on certain direction, without taking into account the difference change between the pixels and its adjacent area, a steganalysis algorithm for EALSBMR is proposed based on comparing the eight-direction difference histogram of cover and stego image. It calculates the eight-direction absolute difference histogram. Then histogram bins changed obviously are built for features. At last, Support Vector Machine(SVM) as classifier output the result of steganalysis. Experimental data for lower embedding rates(≤0.5 bpp) illustrate that the proposed method is superior to currently typical steganalysis methods.