电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2014年
15期
80-86
,共7页
肖迁%李文华%李志刚%刘金龙%刘会巧
肖遷%李文華%李誌剛%劉金龍%劉會巧
초천%리문화%리지강%류금룡%류회교
小波分析%相空间重构%C-C法%遗传算法%神经网络%功率曲线转换法
小波分析%相空間重構%C-C法%遺傳算法%神經網絡%功率麯線轉換法
소파분석%상공간중구%C-C법%유전산법%신경망락%공솔곡선전환법
wavelet analysis%phase-space reconstruction%C-C method%genetic algorithm%neural network%power curve conversion method
为了提高超短期风电功率预测精度,使用改进的小波-BP神经网络方法进行研究。针对预测模型普遍存在的延时问题,先通过离散小波变换将信号分解为高低频段的信号,再用遗传算法优化的 BP神经网络分别进行建模,最后求和各层预测信号。由于功率和风速具有混沌特性,用C-C法联合优化重构相空间的参数,以嵌入维数为神经网络输入层节点数。应用于山东某风电场,仿真结果表明,与BP神经网络模型相比,该算法预测风速和功率精度较高,但风速预测值经过实际功率曲线转换后,功率预测精度变差。
為瞭提高超短期風電功率預測精度,使用改進的小波-BP神經網絡方法進行研究。針對預測模型普遍存在的延時問題,先通過離散小波變換將信號分解為高低頻段的信號,再用遺傳算法優化的 BP神經網絡分彆進行建模,最後求和各層預測信號。由于功率和風速具有混沌特性,用C-C法聯閤優化重構相空間的參數,以嵌入維數為神經網絡輸入層節點數。應用于山東某風電場,倣真結果錶明,與BP神經網絡模型相比,該算法預測風速和功率精度較高,但風速預測值經過實際功率麯線轉換後,功率預測精度變差。
위료제고초단기풍전공솔예측정도,사용개진적소파-BP신경망락방법진행연구。침대예측모형보편존재적연시문제,선통과리산소파변환장신호분해위고저빈단적신호,재용유전산법우화적 BP신경망락분별진행건모,최후구화각층예측신호。유우공솔화풍속구유혼돈특성,용C-C법연합우화중구상공간적삼수,이감입유수위신경망락수입층절점수。응용우산동모풍전장,방진결과표명,여BP신경망락모형상비,해산법예측풍속화공솔정도교고,단풍속예측치경과실제공솔곡선전환후,공솔예측정도변차。
In order to improve the forecasting accuracy of ultra-short-term wind power, the improved wavelet-BP neural network method is applied. To solve the widespread delay problems of the prediction model, the original signal is decomposed into high and low frequency signal by the discrete wavelet transform. Moreover, genetic algorithm is used to optimize the BP neural network model separately. Finally, the summation of all the prediction results is gotten. As the wind speed and power series have chaos characteristics, the C-C method is used to optimize parameters of phase space reconstruction and the embedded dimension is taken as the input layer’s node number of neural network. It is applied in a wind farm, in Shandong Province, and the simulation results show that it has higher prediction accuracy than BP neural network model in forecasting wind speed and power. With the conversion of wind speed prediction results by the measured power curve, the power prediction accuracy goes bad.