计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
16期
150-153
,共4页
K-聚类算法%RBF神经网络%模糊控制%溶解氧%MATLAB仿真
K-聚類算法%RBF神經網絡%模糊控製%溶解氧%MATLAB倣真
K-취류산법%RBF신경망락%모호공제%용해양%MATLAB방진
K-the clustering algorithm%RBF neural network%fuzzy control%Dissolved Oxygen(DO)%MATLAB simulation
运用一种基于K-聚类算法的模糊径向基函数(RBF)神经网络对污水处理中的溶解氧质量浓度进行控制,该方法结合了模糊控制的推理能力强与神经网络学习能力强的特点,将模糊控制、RBF神经网络以及K-聚类学习算法相结合以在线调整隶属函数,优化控制规则。通过对阶跃输入仿真分析,其结果表明基于RBF的模糊神经网络控制器具有良好的动态性能、较强的鲁棒性和抗干扰能力,使其快速、准确地达到期望水平。
運用一種基于K-聚類算法的模糊徑嚮基函數(RBF)神經網絡對汙水處理中的溶解氧質量濃度進行控製,該方法結閤瞭模糊控製的推理能力彊與神經網絡學習能力彊的特點,將模糊控製、RBF神經網絡以及K-聚類學習算法相結閤以在線調整隸屬函數,優化控製規則。通過對階躍輸入倣真分析,其結果錶明基于RBF的模糊神經網絡控製器具有良好的動態性能、較彊的魯棒性和抗榦擾能力,使其快速、準確地達到期望水平。
운용일충기우K-취류산법적모호경향기함수(RBF)신경망락대오수처리중적용해양질량농도진행공제,해방법결합료모호공제적추리능력강여신경망락학습능력강적특점,장모호공제、RBF신경망락이급K-취류학습산법상결합이재선조정대속함수,우화공제규칙。통과대계약수입방진분석,기결과표명기우RBF적모호신경망락공제기구유량호적동태성능、교강적로봉성화항간우능력,사기쾌속、준학지체도기망수평。
Using a fuzzy Radial Basis Function(RBF)neural network based on K-clustering algorithm controls the concen-tration of quality of the dissolved oxygen(do)in the sewage treatment. This method combines fuzzy control reasoning ability and neural network learning ability characteristic. Fuzzy control, RBF neural network and K-clustering learning algorithm are applied in order to adjust subjection function on-line, optimize control rules. By the step input simulation analysis, the results show that fuzzy neural network controller based on the RBF has a good dynamic performance, strong robustness and anti-interference ability, make it fast and accurately to achieve the desired level.