计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
16期
77-80,108
,共5页
小波变换%脉冲耦合神经网络(PCNN)%网络流量预测
小波變換%脈遲耦閤神經網絡(PCNN)%網絡流量預測
소파변환%맥충우합신경망락(PCNN)%망락류량예측
wavelet transform%Pulse Coupled Neural Network(PCNN)%network traffic prediction
网络流量预测对网络安全、网络管理等具有重要的意义。针对网络流量的行为特征,提出了基于小波变换的PCNN网络流量预测算法。对预处理的网络流量进行小波分解,利用PCNN模型预测获得的近似系数和细节系数,通过小波逆变换对预测的小波系数进行重构,得到预测的网络流量。实验结果表明,与其他的三种网络流量预测算法相比,算法得到较小的残差,取得了较好的预测效果。
網絡流量預測對網絡安全、網絡管理等具有重要的意義。針對網絡流量的行為特徵,提齣瞭基于小波變換的PCNN網絡流量預測算法。對預處理的網絡流量進行小波分解,利用PCNN模型預測穫得的近似繫數和細節繫數,通過小波逆變換對預測的小波繫數進行重構,得到預測的網絡流量。實驗結果錶明,與其他的三種網絡流量預測算法相比,算法得到較小的殘差,取得瞭較好的預測效果。
망락류량예측대망락안전、망락관리등구유중요적의의。침대망락류량적행위특정,제출료기우소파변환적PCNN망락류량예측산법。대예처리적망락류량진행소파분해,이용PCNN모형예측획득적근사계수화세절계수,통과소파역변환대예측적소파계수진행중구,득도예측적망락류량。실험결과표명,여기타적삼충망락류량예측산법상비,산법득도교소적잔차,취득료교호적예측효과。
Network traffic prediction is very important for network security, network management and so on. According to network behavior characteristics of network traffic, an improved network prediction model is proposed based on wavelet transformation and PCNN. In this paper, a wavelet transformation is needed to the preprocessing network traffic in advance. Then PCNN is conducted to get the similarity coefficient and detail coefficient. The predicting network traffic is obtained by reconstructing the predicting wavelet coefficients with the inverse of wavelet transformation. Experimental results show that the method is superior to the other three methods with smaller residual and better predicting results.