计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
21期
226-229
,共4页
棉花分割%YCbCr颜色空间%K均值算法%粒子群算法
棉花分割%YCbCr顏色空間%K均值算法%粒子群算法
면화분할%YCbCr안색공간%K균치산법%입자군산법
cotton segmentation%YCbCr color space%K-means algorithm%Particle Swarm Optimization(PSO)algorithm
棉花分割是采棉机器人视觉系统的关键步骤,在强光照、阴影等复杂的棉田环境下准确有效地分割棉花,有助于确定其在三维空间的位置。针对棉花图片的特点,提出在YCbCr颜色空间下,采用粒子群(PSO)和K均值混合聚类算法,提高了聚类算法的全局搜索能力,根据群体适应度方差来确定K均值聚类算法操作时机,增强算法局部精确搜索能力的同时缩短了收敛时间。通过对棉田环境中拍摄图像的分割实验表明:本方法对在阳光直射及阴影等干扰条件下的棉花图片也能准确分割,效果优于传统PSO和K均值算法。
棉花分割是採棉機器人視覺繫統的關鍵步驟,在彊光照、陰影等複雜的棉田環境下準確有效地分割棉花,有助于確定其在三維空間的位置。針對棉花圖片的特點,提齣在YCbCr顏色空間下,採用粒子群(PSO)和K均值混閤聚類算法,提高瞭聚類算法的全跼搜索能力,根據群體適應度方差來確定K均值聚類算法操作時機,增彊算法跼部精確搜索能力的同時縮短瞭收斂時間。通過對棉田環境中拍攝圖像的分割實驗錶明:本方法對在暘光直射及陰影等榦擾條件下的棉花圖片也能準確分割,效果優于傳統PSO和K均值算法。
면화분할시채면궤기인시각계통적관건보취,재강광조、음영등복잡적면전배경하준학유효지분할면화,유조우학정기재삼유공간적위치。침대면화도편적특점,제출재YCbCr안색공간하,채용입자군(PSO)화K균치혼합취류산법,제고료취류산법적전국수색능력,근거군체괄응도방차래학정K균치취류산법조작시궤,증강산법국부정학수색능력적동시축단료수렴시간。통과대면전배경중박섭도상적분할실험표명:본방법대재양광직사급음영등간우조건하적면화도편야능준학분할,효과우우전통PSO화K균치산법。
Image segmentation of cotton is the key step of the cotton picker robot vision system. In the complex environment of the cotton fields of the strong light, shadow, etc. accurately and effectively splitting cotton, helps to determine its position in three-dimensional space. In accordance with the characteristics of cotton pictures, a method of Particle Swarm Optimization(PSO) and K-means hybrid clustering in YCbCr color space is proposed. This approach reinforces the exploitation of global optimum of the PSO algorithm. In order to avoid the premature convergence and speed up the convergence, traditional K-means algorithm is used to explore the local search space more efficiently dynamically according to the variation of the particle swarm’s fitness variance. The experiment results show that this method can segment cotton image with the complex background, and is more effective than the traditional PSO and K-means algorithm.