计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
21期
212-215
,共4页
经验模式分解%心音%复杂度%支持向量机
經驗模式分解%心音%複雜度%支持嚮量機
경험모식분해%심음%복잡도%지지향량궤
Empirical Mode Decomposition(EMD)%heart sound%complexity%Support Vector Machine(SVM)
为提高非线性、非平稳心音信号特征提取的准确性和分类识别的高效性,提出一种基于固有模态函数(Intrinsic Mode Function,IMF)复杂度和二叉树支持向量机(Binary Tree Support Vector Machine,BT-SVM)的心音分类识别方法。对心音进行经验模式分解(Empirical Mode Decomposition,EMD),得到若干反映心音本体特征的平稳IMF分量;利用互相关系数准则对其筛选,计算所选IMF分量的复杂度值为信号的特征;将其组成特征向量输入到BT-SVM进行分类识别。临床数据仿真结果表明,该方法能有效提取心音特征,与传统识别方法相比,具有训练时间短,识别率高等优点。
為提高非線性、非平穩心音信號特徵提取的準確性和分類識彆的高效性,提齣一種基于固有模態函數(Intrinsic Mode Function,IMF)複雜度和二扠樹支持嚮量機(Binary Tree Support Vector Machine,BT-SVM)的心音分類識彆方法。對心音進行經驗模式分解(Empirical Mode Decomposition,EMD),得到若榦反映心音本體特徵的平穩IMF分量;利用互相關繫數準則對其篩選,計算所選IMF分量的複雜度值為信號的特徵;將其組成特徵嚮量輸入到BT-SVM進行分類識彆。臨床數據倣真結果錶明,該方法能有效提取心音特徵,與傳統識彆方法相比,具有訓練時間短,識彆率高等優點。
위제고비선성、비평은심음신호특정제취적준학성화분류식별적고효성,제출일충기우고유모태함수(Intrinsic Mode Function,IMF)복잡도화이차수지지향량궤(Binary Tree Support Vector Machine,BT-SVM)적심음분류식별방법。대심음진행경험모식분해(Empirical Mode Decomposition,EMD),득도약간반영심음본체특정적평은IMF분량;이용호상관계수준칙대기사선,계산소선IMF분량적복잡도치위신호적특정;장기조성특정향량수입도BT-SVM진행분류식별。림상수거방진결과표명,해방법능유효제취심음특정,여전통식별방법상비,구유훈련시간단,식별솔고등우점。
To improve the precision of extracting feature and efficiency of classification and recognition from the non-stationary and non-linear heart sounds, a new method based on complexity feature of Intrinsic Mode Function(IMF)and Binary Tree Sup-port Vector Machine(BT-SVM)is proposed. Original heart sound is decomposed into a finite number of stationary IMFs with EMD;the complexity of IMF component is calculated using mutual correlation coefficient between several criteria which can be quantitatively evaluated as the feature of heart sound;the eigenvectors are input into BT-SVM classifier for recognition. Experi-mental results show that the method not only can effectively extract heart sound feature, but also has shorter training time and high recognition rate compared with traditional recognition network.