矿冶工程
礦冶工程
광야공정
2014年
4期
111-114
,共4页
黄群%陈腾飞%刘磊%马艺林%何平鸽
黃群%陳騰飛%劉磊%馬藝林%何平鴿
황군%진등비%류뢰%마예림%하평합
炭/炭复合材料%化学气相渗透%显微结构%孔径分布%力学性能
炭/炭複閤材料%化學氣相滲透%顯微結構%孔徑分佈%力學性能
탄/탄복합재료%화학기상삼투%현미결구%공경분포%역학성능
C/C composite%chemical vapor infiltration%microstructure%pore size distribution%mechanical properties
以天然气为碳源,氢气为载气,采用等温化学气相渗透工艺对预制体初始密度为0.5 g/cm3(纤维体积分数为28%)的针刺整体毡进行致密化,在70 h内制备出表观密度为1.76 g/cm3的炭/炭复合材料。采用压汞法对复合材料的开孔孔径分布进行了分析,用偏光显微镜和扫描电镜观察了基体的微观组织,分析了三点抗弯试样的断口形貌。结果表明,复合材料中的开孔以小于40μm的微孔为主,基体热解炭几乎全部由粗糙层热解炭组成,仅在化学气相渗透的初始阶段在炭纤维的表面形成了很薄的一层各向同性热解炭,复合材料的抗弯强度达到210 MPa。
以天然氣為碳源,氫氣為載氣,採用等溫化學氣相滲透工藝對預製體初始密度為0.5 g/cm3(纖維體積分數為28%)的針刺整體氈進行緻密化,在70 h內製備齣錶觀密度為1.76 g/cm3的炭/炭複閤材料。採用壓汞法對複閤材料的開孔孔徑分佈進行瞭分析,用偏光顯微鏡和掃描電鏡觀察瞭基體的微觀組織,分析瞭三點抗彎試樣的斷口形貌。結果錶明,複閤材料中的開孔以小于40μm的微孔為主,基體熱解炭幾乎全部由粗糙層熱解炭組成,僅在化學氣相滲透的初始階段在炭纖維的錶麵形成瞭很薄的一層各嚮同性熱解炭,複閤材料的抗彎彊度達到210 MPa。
이천연기위탄원,경기위재기,채용등온화학기상삼투공예대예제체초시밀도위0.5 g/cm3(섬유체적분수위28%)적침자정체전진행치밀화,재70 h내제비출표관밀도위1.76 g/cm3적탄/탄복합재료。채용압홍법대복합재료적개공공경분포진행료분석,용편광현미경화소묘전경관찰료기체적미관조직,분석료삼점항만시양적단구형모。결과표명,복합재료중적개공이소우40μm적미공위주,기체열해탄궤호전부유조조층열해탄조성,부재화학기상삼투적초시계단재탄섬유적표면형성료흔박적일층각향동성열해탄,복합재료적항만강도체도210 MPa。
With natural gas as carbon source and hydrogen as carrier, carbon/carbon composite ( with an apparent density of 1.76 g/cm3 ) was prepared within 70 hours by densifying the preform of needle-punched integrated carbon felt with an initial density of 0.5 g/cm3( volume fraction of 28%) by chemical vapor infiltration. The size distribution of open pores of the C/C composite sample was measured by mercury intrusion method. The microstructure of the composite was investigated by polarized light microscope ( PLM) and scanning electron microscope. And the mechanical properties were tested by three point bending method. Results show that the size of most of open pores was less than 40 μm, and the matrix of pyrocarbon mostly consisted of rough laminar pyrocarbon, except for one layer of isotropic pyrocarbon around the carbon fiber, which was formed at the beginning of infiltration process. The flexural strength of the C/C composite was about 210 MPa.