华南农业大学学报
華南農業大學學報
화남농업대학학보
JOURNAL OF SOUTH CHINA AGRICULTURAL UNIVERSITY
2014年
3期
100-104,110
,共6页
顾哲衍%张金池%林杰%韩诚%刘鑫
顧哲衍%張金池%林傑%韓誠%劉鑫
고철연%장금지%림걸%한성%류흠
遥感%叶面积指数%大气校正
遙感%葉麵積指數%大氣校正
요감%협면적지수%대기교정
remote sensing%leaf area index%atmospheric correction
【目的】为利用遥感技术定量提取区域尺度的阔叶林叶面积指数前的大气校正模型选择提供科学依据。【方法】分别利用6S模型、FLAASH模型和ATCOR2模型对Landsat 8 OLI影像进行了大气校正,分析了3种模型下的阔叶林叶面积指数( LAI)与多种植被指数( VI)相关性,建立了LAI-VI的线性和非线性的回归模型,最后通过验证数据组LAI预测值( Y)与LAI实测值( X)的均方根误差( RMSE)及线性相关性大小对阔叶林LAI遥感估算结果进行了精度对比。【结果和结论】ATCOR2模型不适于阔叶林LAI-VI的回归建模;除比值植被指数( RVI)外,FLAASH模型与6S模型下的阔叶林LAI与增强型植被指数(EVI)、修正土壤调节植被指数(MSAVI)有较好的相关性,其中FLAASH模型下的阔叶林LAI-MSAVI幂函数模型拟合优度最佳;FLAASH模型的阔叶林LAI估算精度优于6S模型;借助遥感技术定量提取植被生理参数时,应慎重选择适宜的大气校正模型。
【目的】為利用遙感技術定量提取區域呎度的闊葉林葉麵積指數前的大氣校正模型選擇提供科學依據。【方法】分彆利用6S模型、FLAASH模型和ATCOR2模型對Landsat 8 OLI影像進行瞭大氣校正,分析瞭3種模型下的闊葉林葉麵積指數( LAI)與多種植被指數( VI)相關性,建立瞭LAI-VI的線性和非線性的迴歸模型,最後通過驗證數據組LAI預測值( Y)與LAI實測值( X)的均方根誤差( RMSE)及線性相關性大小對闊葉林LAI遙感估算結果進行瞭精度對比。【結果和結論】ATCOR2模型不適于闊葉林LAI-VI的迴歸建模;除比值植被指數( RVI)外,FLAASH模型與6S模型下的闊葉林LAI與增彊型植被指數(EVI)、脩正土壤調節植被指數(MSAVI)有較好的相關性,其中FLAASH模型下的闊葉林LAI-MSAVI冪函數模型擬閤優度最佳;FLAASH模型的闊葉林LAI估算精度優于6S模型;藉助遙感技術定量提取植被生理參數時,應慎重選擇適宜的大氣校正模型。
【목적】위이용요감기술정량제취구역척도적활협림협면적지수전적대기교정모형선택제공과학의거。【방법】분별이용6S모형、FLAASH모형화ATCOR2모형대Landsat 8 OLI영상진행료대기교정,분석료3충모형하적활협림협면적지수( LAI)여다충식피지수( VI)상관성,건립료LAI-VI적선성화비선성적회귀모형,최후통과험증수거조LAI예측치( Y)여LAI실측치( X)적균방근오차( RMSE)급선성상관성대소대활협림LAI요감고산결과진행료정도대비。【결과화결론】ATCOR2모형불괄우활협림LAI-VI적회귀건모;제비치식피지수( RVI)외,FLAASH모형여6S모형하적활협림LAI여증강형식피지수(EVI)、수정토양조절식피지수(MSAVI)유교호적상관성,기중FLAASH모형하적활협림LAI-MSAVI멱함수모형의합우도최가;FLAASH모형적활협림LAI고산정도우우6S모형;차조요감기술정량제취식피생리삼수시,응신중선택괄의적대기교정모형。
[Objective]This study aimed to provide a scientific basis for selecting the atmospheric correc-tion model prior to the quantitative extraction of leaf area index of broadleaved forest at a regional scale using remote sensing.[Method]6S model, FLAASH model, and ATCOR2 model were used respectively on Landsat 8 OLI image for the atmospheric correction to analyze the correlation of these three kinds of leaf area index ( LAI) of broadleaved forest and a variety of vegetation index ( VI) , establishing the line-ar and nonlinear regression model of LAI-VI.The root mean square error and correlation of validation da-ta set of LAI predicted value ( Y) and the LAI measured values ( X) were calculated .[Result and con-clusion]The ATCOR2 model was not suitable for building broadleaved forest LAI-VI regression model;in addition to the RVI, for FLAASH model and 6S model, LAI of broadleaved forest had a good correlation with EVI, MSAVI.Among them the power function model of LAI-MSAVI with FLAASH model yield the best goodness of fit .LAI estimation precision of FLAASH model was superior to the 6S model for broad-leaved forest .With the aid of remote sensing technology to quantitatively extract vegetation physiological parameters, suitable atmospheric correction model should be selected prudently .