光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2013年
10期
22-27
,共6页
光学测量%角位移%单目视觉%同心圆%特征直径%交比
光學測量%角位移%單目視覺%同心圓%特徵直徑%交比
광학측량%각위이%단목시각%동심원%특정직경%교비
optical measurement%angular displacement%monocular vision%concentric circle%characteristic diameter%cross ratio
用同心圆做靶面标志,将同心圆靶平行于舵轴固定在舵面上,用单目视觉法实时测出方向舵转动前、后同心圆的位置姿态求转角,取同心圆平行于像面的直径为特征直径。取与特征直径垂直的直径为辅助特征直径,证明了它的像与同心圆透视投影的两个椭圆中心和圆心像点共线,根据共线四点交比不变可求圆心像点。图像处理求出圆心像点位置和两种特征直径的像和它们的原像,可求出靶面的位置姿态和转角。仿真测量结果:测量范围±85°;加标准偏差为2像素的高斯噪声时测角位移的RMS误差小于0.04°。该方法抗噪声能力强;能修正靶面与转轴不平行导致的测量误差,使测量设备安装调节简单。可在停机场实时标定飞机方向舵、升降舵等的角位移传感器。
用同心圓做靶麵標誌,將同心圓靶平行于舵軸固定在舵麵上,用單目視覺法實時測齣方嚮舵轉動前、後同心圓的位置姿態求轉角,取同心圓平行于像麵的直徑為特徵直徑。取與特徵直徑垂直的直徑為輔助特徵直徑,證明瞭它的像與同心圓透視投影的兩箇橢圓中心和圓心像點共線,根據共線四點交比不變可求圓心像點。圖像處理求齣圓心像點位置和兩種特徵直徑的像和它們的原像,可求齣靶麵的位置姿態和轉角。倣真測量結果:測量範圍±85°;加標準偏差為2像素的高斯譟聲時測角位移的RMS誤差小于0.04°。該方法抗譟聲能力彊;能脩正靶麵與轉軸不平行導緻的測量誤差,使測量設備安裝調節簡單。可在停機場實時標定飛機方嚮舵、升降舵等的角位移傳感器。
용동심원주파면표지,장동심원파평행우타축고정재타면상,용단목시각법실시측출방향타전동전、후동심원적위치자태구전각,취동심원평행우상면적직경위특정직경。취여특정직경수직적직경위보조특정직경,증명료타적상여동심원투시투영적량개타원중심화원심상점공선,근거공선사점교비불변가구원심상점。도상처리구출원심상점위치화량충특정직경적상화타문적원상,가구출파면적위치자태화전각。방진측량결과:측량범위±85°;가표준편차위2상소적고사조성시측각위이적RMS오차소우0.04°。해방법항조성능력강;능수정파면여전축불평행도치적측량오차,사측량설비안장조절간단。가재정궤장실시표정비궤방향타、승강타등적각위이전감기。
The concentric circle is taken as target mark. The target parallel to the rudder shaft is fixed on the rudder face. Based on monocular vision, a method for measuring object position and orientation is designed to obtain its angular displacement. Take the diameter parallel to the imaging-plane as a characteristic diameter, and take the diameter perpendicular to the characteristic diameter as an auxiliary characteristic diameter. It is proved that the auxiliary characteristic diameter’s image and two elliptic centers and the projected center are collinear. Based on the invariance of cross ratio, the projected center can be found. Through digital image processing, these characteristic diameter images and their preimages can be obtained. Thus, the relative position and orientation of the concentric circle and its angular displacement can be derived. Simulating test results:measuring range ±85° and RMS error less than 0.04° when Gaussian noise level is 2 pixels. Proposed method has strong ability to resist noise. Measurement errors caused by the target-plane deviating from the rudder-axis direction may be corrected. By this method, the angular displacements of rudder can be calibrated.