计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
11期
145-148
,共4页
压缩采样%剪切波变换%正则化
壓縮採樣%剪切波變換%正則化
압축채양%전절파변환%정칙화
compressive sampling%Shearlet transform%regularizer
针对图像压缩采样中正交小波变换方向有限和单一正则化的问题,提出了一种基于Shearlet的双正则化图像压缩采样恢复算法。该算法用Shearlet作为图像的稀疏表示,用交替最小化对联合正则化模型进行求解。实验结果表明,该算法恢复的图像与单一的全变分正则化方法和小波变换相比有更好的视觉效果,更高的峰值信噪比。
針對圖像壓縮採樣中正交小波變換方嚮有限和單一正則化的問題,提齣瞭一種基于Shearlet的雙正則化圖像壓縮採樣恢複算法。該算法用Shearlet作為圖像的稀疏錶示,用交替最小化對聯閤正則化模型進行求解。實驗結果錶明,該算法恢複的圖像與單一的全變分正則化方法和小波變換相比有更好的視覺效果,更高的峰值信譟比。
침대도상압축채양중정교소파변환방향유한화단일정칙화적문제,제출료일충기우Shearlet적쌍정칙화도상압축채양회복산법。해산법용Shearlet작위도상적희소표시,용교체최소화대연합정칙화모형진행구해。실험결과표명,해산법회복적도상여단일적전변분정칙화방법화소파변환상비유경호적시각효과,경고적봉치신조비。
The orthogonal wavelet fails to provide an optimal sparse representation for images that contain texture details due to limited direction, and the current regularization method is singleness. In this paper, it proposes a compressed sensing reconstruction algorithm based on Shearlet sparse representation and compound regularizers, the algorithm uses Shearlet for image sparse representation, and the problem is solved by alternating minimization algorithm. The experimental results indicate that the visual quality and PSNR of reconstructed image is improved by proposed algorithm compared with single total variation regularizer method and wavelet transform.