电镀与涂饰
電鍍與塗飾
전도여도식
ELECTROPLATING & FINISHING
2014年
9期
391-395
,共5页
李航彬%钱波%黄聪聪%陈新才%张世新%刘祥虎
李航彬%錢波%黃聰聰%陳新纔%張世新%劉祥虎
리항빈%전파%황총총%진신재%장세신%류상호
电镀废水%六价铬%钡盐沉淀法%固固转化
電鍍廢水%六價鉻%鋇鹽沉澱法%固固轉化
전도폐수%륙개락%패염침정법%고고전화
electroplating wastewater%hexavalent chromium%barium salt precipitation%solid-solid transformation
采用钡盐沉淀法处理六价铬电镀废水,研究了废水预调pH、破氰方式和Cr(VI)沉淀剂加入量对六价铬、总铬、铜和镍去除率的影响,并研究了硫酸加入量对铬酸钡沉淀中六价铬回收率的影响。钡盐法处理六价铬电镀废水的最优工艺参数为:预调pH 8,钡盐加入量为理论值的2.4倍,双氧水破氰,液碱终调pH至10。采用最优工艺参数处理后,出水总铬含量为0.4 mg/L,镍含量为0.3 mg/L,铜未检出,均低于GB 21900-2008中表2的排放限值。用浓硫酸对处理废水所得铬酸钡沉淀进行转化反应后,六价铬的回收率可达65%。钡盐沉淀法的药剂成本和危险固废处理成本均较传统化学还原法高,因此钡盐沉淀法较适用于专业镀铬厂和铬水严格分质排放的电镀园区。
採用鋇鹽沉澱法處理六價鉻電鍍廢水,研究瞭廢水預調pH、破氰方式和Cr(VI)沉澱劑加入量對六價鉻、總鉻、銅和鎳去除率的影響,併研究瞭硫痠加入量對鉻痠鋇沉澱中六價鉻迴收率的影響。鋇鹽法處理六價鉻電鍍廢水的最優工藝參數為:預調pH 8,鋇鹽加入量為理論值的2.4倍,雙氧水破氰,液堿終調pH至10。採用最優工藝參數處理後,齣水總鉻含量為0.4 mg/L,鎳含量為0.3 mg/L,銅未檢齣,均低于GB 21900-2008中錶2的排放限值。用濃硫痠對處理廢水所得鉻痠鋇沉澱進行轉化反應後,六價鉻的迴收率可達65%。鋇鹽沉澱法的藥劑成本和危險固廢處理成本均較傳統化學還原法高,因此鋇鹽沉澱法較適用于專業鍍鉻廠和鉻水嚴格分質排放的電鍍園區。
채용패염침정법처리륙개락전도폐수,연구료폐수예조pH、파청방식화Cr(VI)침정제가입량대륙개락、총락、동화얼거제솔적영향,병연구료류산가입량대락산패침정중륙개락회수솔적영향。패염법처리륙개락전도폐수적최우공예삼수위:예조pH 8,패염가입량위이론치적2.4배,쌍양수파청,액감종조pH지10。채용최우공예삼수처리후,출수총락함량위0.4 mg/L,얼함량위0.3 mg/L,동미검출,균저우GB 21900-2008중표2적배방한치。용농류산대처리폐수소득락산패침정진행전화반응후,륙개락적회수솔가체65%。패염침정법적약제성본화위험고폐처리성본균교전통화학환원법고,인차패염침정법교괄용우전업도락엄화락수엄격분질배방적전도완구。
Hexavalent chromium-containing electroplating wastewater was treated by barium salt precipitation. The effects of pH pre-adjustment of wastewater, cyanide decomposition method, and addition of Cr(VI) precipitator on the removal of hexavalent chromium, total chromium, copper, and nickel were studied. The influence of the dosage of sulfuric acid on the recovery of hexavalent chromium was examined. The optimal process parameters for treatment of hexavalent chromium-containing electroplating wastewater by barium salt precipitation are as follows:pre-adjusted pH 8, barium salt dosage 2.5 times of the theoretical value, cyanide decomposition with hydrogen peroxide, and final pH 10 adjusted with liquid caustic soda. After treating under the optimal process conditions, the total chromium content and nickel content in effluent is 0.4 mg/L and 0.3 mg/L, and no copper is detected, all of which are below the emission limits of Table 2 in the GB 21900–2008 standard. The recovery of hexavalent chromium in barium chromate sediment reaches 65% by solid–solid transformation using sulfuric acid. The costs for reagent and treatment of hazardous solid waste by barium salt precipitation are higher than those of traditional chemical reduction. Barium salt precipitation is suitable for professional chrome plating factories and plating industrial parks where chromium wastewater is strictly discharged and collected individually.