计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
11期
95-98
,共4页
网络入侵检测%特征选择%粒子群优化算法%K最近邻
網絡入侵檢測%特徵選擇%粒子群優化算法%K最近鄰
망락입침검측%특정선택%입자군우화산법%K최근린
network intrusion detection%features selection%particle swarm optimization algorithm%k-nearest neighbor
为了提高网络入侵检测效果,提出一种粒子群优化算法(PSO)和K最近邻相融(KNN)的网络入侵检测模型(PSO-KNN)。首先特征子集和KNN参数作为一个粒子,然后通过粒子之间的信息交流和相互协作,找到最优特征子集和KNN参数,从而建立最优网络入侵检测模型,最后利用KDD 1999数据集对模型性能进行测试。结果表明,相对于其他入侵检测算法,PSO-KNN更有效地精简网络数据特征,提高分类算法的网络入侵检测速度及检测率。
為瞭提高網絡入侵檢測效果,提齣一種粒子群優化算法(PSO)和K最近鄰相融(KNN)的網絡入侵檢測模型(PSO-KNN)。首先特徵子集和KNN參數作為一箇粒子,然後通過粒子之間的信息交流和相互協作,找到最優特徵子集和KNN參數,從而建立最優網絡入侵檢測模型,最後利用KDD 1999數據集對模型性能進行測試。結果錶明,相對于其他入侵檢測算法,PSO-KNN更有效地精簡網絡數據特徵,提高分類算法的網絡入侵檢測速度及檢測率。
위료제고망락입침검측효과,제출일충입자군우화산법(PSO)화K최근린상융(KNN)적망락입침검측모형(PSO-KNN)。수선특정자집화KNN삼수작위일개입자,연후통과입자지간적신식교류화상호협작,조도최우특정자집화KNN삼수,종이건립최우망락입침검측모형,최후이용KDD 1999수거집대모형성능진행측시。결과표명,상대우기타입침검측산법,PSO-KNN경유효지정간망락수거특정,제고분류산법적망락입침검측속도급검측솔。
In order to improve network intrusion detection performance, this paper proposes a network intrusion detection model based on particle swarm optimization and k-nearest neighbor. Firstly, the features and KNN’s parameters are taken as a particle, and then the optimal features and KNN’s parameters are got by particle swarm to build the optimal network intrusion detection model, finally, the performance of the built model is tested by KDD 1999 data. Experimental results show that the proposed algorithm is more effective for feature selection of network data and improvement of network intrusion detection speed and detection rate of classification algorithms.