纺织高校基础科学学报
紡織高校基礎科學學報
방직고교기출과학학보
BASIC SCIENCES JOURNAL OF TEXTILE UNIVERSITIES
2013年
3期
344-350,369
,共8页
趋化性%有界性%稳定解%收敛性
趨化性%有界性%穩定解%收斂性
추화성%유계성%은정해%수렴성
chemotaxis%boundedness%stationary solutions%convergence
本文考虑一个两物种的抛物-椭圆排斥趋化模型。首先,用不动点原理证明了模型解的局部存在性。其次,用 Lp 估计技巧和 Moser 迭代证明了整体解存在且一致有界。最后通过构造Lyapunov泛函证明了模型解在 L∞(Ω)空间中指数收敛到非零常数稳定解。
本文攷慮一箇兩物種的拋物-橢圓排斥趨化模型。首先,用不動點原理證明瞭模型解的跼部存在性。其次,用 Lp 估計技巧和 Moser 迭代證明瞭整體解存在且一緻有界。最後通過構造Lyapunov汎函證明瞭模型解在 L∞(Ω)空間中指數收斂到非零常數穩定解。
본문고필일개량물충적포물-타원배척추화모형。수선,용불동점원리증명료모형해적국부존재성。기차,용 Lp 고계기교화 Moser 질대증명료정체해존재차일치유계。최후통과구조Lyapunov범함증명료모형해재 L∞(Ω)공간중지수수렴도비령상수은정해。
A parabolic-elliptic repulsion chemotaxis model with two species was considered in this paper . First ,based on a fixed point argument ,it was proved that the model had a local solution .Then ,it was proved that the model had a globally-in-time bounded solution via the Lp-estimate technique and Moser′sisiteration method .Finally ,by the Lyapunov functional approach ,it was shown that the solution conver-ges to a non-zero stationary solution exponentially in L∞ (Ω) as t→ + ∞ .