工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2013年
5期
731-735
,共5页
逆问题%边值问题%特征值%参数边界条件
逆問題%邊值問題%特徵值%參數邊界條件
역문제%변치문제%특정치%삼수변계조건
inverse problem%boundary value problem%eigenvalue%boundary condition depen-dent on the spectral parameter
本文讨论边界条件中含有谱参数的Sturm-Liouville算子的逆问题,并且建立了这个算子的惟一性定理.利用Hochstadt-Lieberman的方法及整函数的性质,我们证明对固定的非负整数n,如果测得一组不同参数边界条件下Sturm-Liouville算子的第n个特征值的无穷集合,则组谱集合能够惟一确定区间[0,π]上的势函数q(x)及边界条件中的系数h.
本文討論邊界條件中含有譜參數的Sturm-Liouville算子的逆問題,併且建立瞭這箇算子的惟一性定理.利用Hochstadt-Lieberman的方法及整函數的性質,我們證明對固定的非負整數n,如果測得一組不同參數邊界條件下Sturm-Liouville算子的第n箇特徵值的無窮集閤,則組譜集閤能夠惟一確定區間[0,π]上的勢函數q(x)及邊界條件中的繫數h.
본문토론변계조건중함유보삼수적Sturm-Liouville산자적역문제,병차건립료저개산자적유일성정리.이용Hochstadt-Lieberman적방법급정함수적성질,아문증명대고정적비부정수n,여과측득일조불동삼수변계조건하Sturm-Liouville산자적제n개특정치적무궁집합,칙조보집합능구유일학정구간[0,π]상적세함수q(x)급변계조건중적계수h.
The inverse problem of Sturm-Liouville operators with boundary condition depen-dent on the spectral parameter is considered and a uniqueness theorem for the Sturm-Liouville operator is established in this paper. Applying the Hochstadt-Lieberman’s method and prop-erties of entire functions, we verify that if the infinite set of the n-th eigenvalues for the Sturm-Liouville operator of the different boundary conditions can be measured for a fixed non-negative integer n, then this spectral set is sufficient to determine the potential q(x) on the interval [0,π] and the coefficient h of the boundary condition.