岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2013年
10期
2979-2983,2990
,共6页
杨泰华%龚建伍%汤斌%俞晓%贺怀建
楊泰華%龔建伍%湯斌%俞曉%賀懷建
양태화%공건오%탕빈%유효%하부건
位移效应%变位模式%非极限状态%土压力
位移效應%變位模式%非極限狀態%土壓力
위이효응%변위모식%비겁한상태%토압력
displacement effect%movement mode%unlimited state%earth pressure
假定内摩擦角与位移呈非线性关系,采用所提出的土压力计算理论,结合室内模型试验结果,对墙体的平移(T模式)、绕墙体底采点转动(RBT 模式)、绕墙顶采点转动(RTT 模式)变位模式下考虑位移的被动土压力进行计算分析,分析表明:计算结果在土压力强度沿墙高度上的分布、土压力合力大小以及合力作用点位置均与实测值较为吻合,从而表明:(1)用该计算理论公式计算不同变位模式下被动土压力是可行的。(2)从土压力强度的计算值和实测值吻合情况来看:RBT变位模式下计算值与实测值符合最好,T变位模式下次之,RTT变位模式下相对最差。(3)从达到朗肯被动土压力合力所需位移量来看:T变位模式下最小,RTT变位模式下次之,RBT变位模式下相对最大。(4)土压力合力作用点位置:T变位模式下在离墙底1/3高度处,RBT模式下均位于离墙底1/3高度以上,RTT模式下均位于离墙底1/3高度以下,并且RBT和RTT模式下均随着转动点至挡土墙最近端点的距离与墙高的比值n的增大逐渐向T变位模式下的合力作用点位置靠拢(即离墙底1/3高度处),这一观点与事实情况完全相符。
假定內摩抆角與位移呈非線性關繫,採用所提齣的土壓力計算理論,結閤室內模型試驗結果,對牆體的平移(T模式)、繞牆體底採點轉動(RBT 模式)、繞牆頂採點轉動(RTT 模式)變位模式下攷慮位移的被動土壓力進行計算分析,分析錶明:計算結果在土壓力彊度沿牆高度上的分佈、土壓力閤力大小以及閤力作用點位置均與實測值較為吻閤,從而錶明:(1)用該計算理論公式計算不同變位模式下被動土壓力是可行的。(2)從土壓力彊度的計算值和實測值吻閤情況來看:RBT變位模式下計算值與實測值符閤最好,T變位模式下次之,RTT變位模式下相對最差。(3)從達到朗肯被動土壓力閤力所需位移量來看:T變位模式下最小,RTT變位模式下次之,RBT變位模式下相對最大。(4)土壓力閤力作用點位置:T變位模式下在離牆底1/3高度處,RBT模式下均位于離牆底1/3高度以上,RTT模式下均位于離牆底1/3高度以下,併且RBT和RTT模式下均隨著轉動點至擋土牆最近耑點的距離與牆高的比值n的增大逐漸嚮T變位模式下的閤力作用點位置靠攏(即離牆底1/3高度處),這一觀點與事實情況完全相符。
가정내마찰각여위이정비선성관계,채용소제출적토압력계산이론,결합실내모형시험결과,대장체적평이(T모식)、요장체저채점전동(RBT 모식)、요장정채점전동(RTT 모식)변위모식하고필위이적피동토압력진행계산분석,분석표명:계산결과재토압력강도연장고도상적분포、토압력합력대소이급합력작용점위치균여실측치교위문합,종이표명:(1)용해계산이론공식계산불동변위모식하피동토압력시가행적。(2)종토압력강도적계산치화실측치문합정황래간:RBT변위모식하계산치여실측치부합최호,T변위모식하차지,RTT변위모식하상대최차。(3)종체도랑긍피동토압력합력소수위이량래간:T변위모식하최소,RTT변위모식하차지,RBT변위모식하상대최대。(4)토압력합력작용점위치:T변위모식하재리장저1/3고도처,RBT모식하균위우리장저1/3고도이상,RTT모식하균위우리장저1/3고도이하,병차RBT화RTT모식하균수착전동점지당토장최근단점적거리여장고적비치n적증대축점향T변위모식하적합력작용점위치고롱(즉리장저1/3고도처),저일관점여사실정황완전상부。
Assuming the internal friction angles of backfills and their displacements are in nonlinear, to adopt the calculation model that was put forward by the author, combined with the indoor mode experiment, the authors calculate and analyze the passive earth pressure acted on the retaining wall in different movement modes:translation (i.e. Mode T), rotation around a certain point under the wall-bottom (i.e. Mode RBT) and rotation around some point above the wall top (i.e. Mode RTT). The analysis results show that the calculated values and the test values can agree with each other very well in the three ways of the distribution of soil pressure strength along the wall height, the values of the total earth pressure and the location of the action point of the total earth pressure. It is shown that:(1) It is feasible to use the calculation model to calculate the passive earth pressure in different movement modes. (2) For the agreement degree between the calculated values and the test values of the soil pressure strength distribution, it is the best in Mode RBT;next is Mode T;it is relatively the worst in Mode RTT. (3) For the required displacement to reach the Rankine's passive earth pressure force, it is the minimum in Mode T;next is in Mode RTT;it is relatively the maximum in Mode RBT. (4) For the location of the action point of the total earth pressure, in Mode T, those are all at the 1/3 wall’s height from the wall bottom;in Mode RBT, those are all over the 1/3 wall’s height;in Mode RTT, those are all below the 1/3 wall’s height;and in RBT and RTT mode locations of the action point all gradually trend to the 1/3 height place from the wall bottom with the value of n (the ratio of the distance from rotation point to retaining wall proximal endpoint to wall's height) increasing gradually. These views are completely consistent with the fact.