林业机械与木工设备
林業機械與木工設備
임업궤계여목공설비
FORESTRY MACHINERY & WOODWORKING EQUIPMENT
2013年
11期
32-37
,共6页
李美平%黄思琪%张玥%马尔妮
李美平%黃思琪%張玥%馬爾妮
리미평%황사기%장모%마이니
木质碳纤维原丝%固化%微细结构
木質碳纖維原絲%固化%微細結構
목질탄섬유원사%고화%미세결구
wood-based carbon fiber precursor%curing%microstructure
将杉木木粉经苯酚液化、熔融纺丝后,在甲醛、盐酸和蒸馏水组成的固化液中固化,得到木质碳纤维原丝。讨论了木质碳纤维原丝在固化过程中的表面形貌、官能团变化、微晶结构和热稳定性。得到的结论如下:①固化过程中,原丝表面保持平滑,未发生明显变化,固化升温时间达到4h后固化比较完全,原丝内部结构致密。②固化条件为3h+2h时,苯环上的H原子开始被取代,原丝进入固化交联初阶段。升温时间达到4h后生成的亚甲基键和苯环上的羟基发生脱水缩合反应,生成C-O-C和少量C-C=O结构,交联反应加强。③不同固化阶段原丝的片层间距(d002)均稳定在0.448~0.479范围内,同时,沿c轴上的堆积高度(Lc)在1h+2h时最小,2h+2h时最大,2h后略微下降,随着固化时间增加,维持在0.805~0.833范围内。④固化初期原丝的热稳定性较差,在900℃失重率达99.3%;升温时间从2h到5h时,失重率从63.9%逐渐降到52.8%,原丝稳定性提高。⑤原丝中微孔的比例随固化时间的增加呈增大趋势,固化过程中有部分非微孔的孔隙向微孔转化。
將杉木木粉經苯酚液化、鎔融紡絲後,在甲醛、鹽痠和蒸餾水組成的固化液中固化,得到木質碳纖維原絲。討論瞭木質碳纖維原絲在固化過程中的錶麵形貌、官能糰變化、微晶結構和熱穩定性。得到的結論如下:①固化過程中,原絲錶麵保持平滑,未髮生明顯變化,固化升溫時間達到4h後固化比較完全,原絲內部結構緻密。②固化條件為3h+2h時,苯環上的H原子開始被取代,原絲進入固化交聯初階段。升溫時間達到4h後生成的亞甲基鍵和苯環上的羥基髮生脫水縮閤反應,生成C-O-C和少量C-C=O結構,交聯反應加彊。③不同固化階段原絲的片層間距(d002)均穩定在0.448~0.479範圍內,同時,沿c軸上的堆積高度(Lc)在1h+2h時最小,2h+2h時最大,2h後略微下降,隨著固化時間增加,維持在0.805~0.833範圍內。④固化初期原絲的熱穩定性較差,在900℃失重率達99.3%;升溫時間從2h到5h時,失重率從63.9%逐漸降到52.8%,原絲穩定性提高。⑤原絲中微孔的比例隨固化時間的增加呈增大趨勢,固化過程中有部分非微孔的孔隙嚮微孔轉化。
장삼목목분경분분액화、용융방사후,재갑철、염산화증류수조성적고화액중고화,득도목질탄섬유원사。토론료목질탄섬유원사재고화과정중적표면형모、관능단변화、미정결구화열은정성。득도적결론여하:①고화과정중,원사표면보지평활,미발생명현변화,고화승온시간체도4h후고화비교완전,원사내부결구치밀。②고화조건위3h+2h시,분배상적H원자개시피취대,원사진입고화교련초계단。승온시간체도4h후생성적아갑기건화분배상적간기발생탈수축합반응,생성C-O-C화소량C-C=O결구,교련반응가강。③불동고화계단원사적편층간거(d002)균은정재0.448~0.479범위내,동시,연c축상적퇴적고도(Lc)재1h+2h시최소,2h+2h시최대,2h후략미하강,수착고화시간증가,유지재0.805~0.833범위내。④고화초기원사적열은정성교차,재900℃실중솔체99.3%;승온시간종2h도5h시,실중솔종63.9%축점강도52.8%,원사은정성제고。⑤원사중미공적비례수고화시간적증가정증대추세,고화과정중유부분비미공적공극향미공전화。
Wood-based carbon fiber precursor is obtained after fir wood powder goes through liquefection in phenol and melt spinning, followed by curing in the curing liquid consisting of formaldehyde, hydrorchloric acid and distilled water. The morphology, functional group change, microcrystalline structure and thermal stability of wood-based carbon fiber precursor are discussed, with conclusions as follows: (1) During the curing process, the precursor’s surface remains smooth, with no significant changes, with complete curing obtained after a four-hour temperature rise period in the curing process, with a dense internal structure. (2) Curing conditions:3h+2h, with H atom on the benzene ring replaced , precursor entering an initial stage of crosslinking curing. After four-hour temperature rise, generated methylene linkage and hydroxyl groups on the benzene ring go through dehydration-condensation reaction and form C-O-C structure and a small amount of C-C=O structure, with crosslinking reactions enhanced. (3)The lamellar spacings (d002)of precursors maintain between 0.448 and 0.479 at different curing stages, and at the same time, the accumulation height along the axis C is the smallest in the case of 1h+2h and highest in the case of 2h+2h, slightly lower after 2h, maintaining between 0.805 and 0.833 with the increase in the curing time. (4) The thermal stability of precursors is poor at the initial curing stage, with the weightlessness rate reaching 99.3%at 900℃, drop from 63.9%to 52.8%during 2h-5h temperature rise period, with precursor stability increased. (5) The proportion of micropores in the precursor increases with the increase in the curing time, with some non-micropores changing to micropores in the curing process.