噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2013年
5期
150-154
,共5页
赵志华%吴力%殷海双
趙誌華%吳力%慇海雙
조지화%오력%은해쌍
振动与波%小波神经网络%往复泵%故障诊断%小波包
振動與波%小波神經網絡%往複泵%故障診斷%小波包
진동여파%소파신경망락%왕복빙%고장진단%소파포
vibration and wave%wavelet neural network%reciprocating pump%fault diagnosis%wavelet packet
为了对往复泵的故障进行正确诊断,提出基于紧致型小波神经网络的往复泵故障诊断方法。以往复泵单个泵缸内的压力信号作为系统特征信号通过小波包分解来提取故障特征向量,同时将此特征向量作为小波神经网络的输入,利用小波神经网络对故障做进一步的精确实时诊断。通过对往复泵液力端多故障诊断实例的检验表明,该系统故障诊断正确率达到94%以上。
為瞭對往複泵的故障進行正確診斷,提齣基于緊緻型小波神經網絡的往複泵故障診斷方法。以往複泵單箇泵缸內的壓力信號作為繫統特徵信號通過小波包分解來提取故障特徵嚮量,同時將此特徵嚮量作為小波神經網絡的輸入,利用小波神經網絡對故障做進一步的精確實時診斷。通過對往複泵液力耑多故障診斷實例的檢驗錶明,該繫統故障診斷正確率達到94%以上。
위료대왕복빙적고장진행정학진단,제출기우긴치형소파신경망락적왕복빙고장진단방법。이왕복빙단개빙항내적압력신호작위계통특정신호통과소파포분해래제취고장특정향량,동시장차특정향량작위소파신경망락적수입,이용소파신경망락대고장주진일보적정학실시진단。통과대왕복빙액력단다고장진단실례적검험표명,해계통고장진단정학솔체도94%이상。
A method of fault diagnosis for reciprocating pumps was proposed based on the compact wavelet neural network. In this method, the pressure signal of a single cylinder of the reciprocating pump was used as the characteristic signal of the system to extract the feature vector of the faults by means of the wavelet packet decomposition. At the same time, this feature vector was employed as the input signal of the wavelet neural network to determine the type of the fault. The examples of faults diagnosis at the fluid end of the reciprocating pump show that the correctness rate of the system fault diagnosis can exceed 94%.