高校化学工程学报
高校化學工程學報
고교화학공정학보
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES
2013年
5期
877-883
,共7页
李桂香%王磊%李继定%王元麒
李桂香%王磊%李繼定%王元麒
리계향%왕뢰%리계정%왕원기
气体膜分离%主元分析%最小二乘支持向量机%软测量
氣體膜分離%主元分析%最小二乘支持嚮量機%軟測量
기체막분리%주원분석%최소이승지지향량궤%연측량
gas membrane separation%principal components analysis%least square support vector machine%soft measurement
针对氢回收膜分离过程中一些重要性能参数难以在线测量,提出一种基于PCA-LSSVM的软测量模型。首先,用PCA分析影响气体膜分离过程的多个非线性变量间的相关性,得到它们各自对目标变量的重要程度。然后,用网格搜索、交叉验证结合贝叶斯估计,得到LSSVM模型的2个最优参数值(gam为0.7,sig2为100)。最后,建立模型并对数据进行预测。仿真结果表明,4输入变量(渗透气压力、尾气侧压力、原料气氢浓度、一段膜流量)PCA-LSSVM模型的预测值,与实测的渗透气氢浓度、渗透气流量和尾气氢浓度符合较好,最大相对误差都在8%以内,而且模型的收敛速度不到1 s,可为气体膜分离过程重要性能参数的在线检测和其过程的优化控制提供指导。
針對氫迴收膜分離過程中一些重要性能參數難以在線測量,提齣一種基于PCA-LSSVM的軟測量模型。首先,用PCA分析影響氣體膜分離過程的多箇非線性變量間的相關性,得到它們各自對目標變量的重要程度。然後,用網格搜索、交扠驗證結閤貝葉斯估計,得到LSSVM模型的2箇最優參數值(gam為0.7,sig2為100)。最後,建立模型併對數據進行預測。倣真結果錶明,4輸入變量(滲透氣壓力、尾氣側壓力、原料氣氫濃度、一段膜流量)PCA-LSSVM模型的預測值,與實測的滲透氣氫濃度、滲透氣流量和尾氣氫濃度符閤較好,最大相對誤差都在8%以內,而且模型的收斂速度不到1 s,可為氣體膜分離過程重要性能參數的在線檢測和其過程的優化控製提供指導。
침대경회수막분리과정중일사중요성능삼수난이재선측량,제출일충기우PCA-LSSVM적연측량모형。수선,용PCA분석영향기체막분리과정적다개비선성변량간적상관성,득도타문각자대목표변량적중요정도。연후,용망격수색、교차험증결합패협사고계,득도LSSVM모형적2개최우삼수치(gam위0.7,sig2위100)。최후,건립모형병대수거진행예측。방진결과표명,4수입변량(삼투기압력、미기측압력、원료기경농도、일단막류량)PCA-LSSVM모형적예측치,여실측적삼투기경농도、삼투기류량화미기경농도부합교호,최대상대오차도재8%이내,이차모형적수렴속도불도1 s,가위기체막분리과정중요성능삼수적재선검측화기과정적우화공제제공지도。
To aimed at the difficulty of measuring the performance parameters of hydrogen recovery membrane separation process in real time, a soft measurement model based on PCA-LSSVM was proposed. Firstly, PCA was used to analyze the relevance of multiple nonlinear variables, and obtain their different important degrees for the target variable. Then, combined grid search and cross validation with Bayes estimation were used to obtain the optimal value of two important parameters (gam=0.7, sig2=100) of LSSVM. The simulation results show that the prediction results of the model with four variables (permeate-side pressure, residue-side pressure, feed hydrogen concentration, feed gas flux) are in reasonable agreement with the measurement values. All the maximal relative errors are less than 8%, and the convergence rate of the model is less than 1 s. This study provides a guidance for the on-line detection of important performance parameters of the gas membrane separation process and its process optimal control.