岩石力学与工程学报
巖石力學與工程學報
암석역학여공정학보
CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING
2013年
z2期
3455-3465
,共11页
卞跃威%夏才初%肖维民%朱合华
卞躍威%夏纔初%肖維民%硃閤華
변약위%하재초%초유민%주합화
隧道工程%非静水压力场%应力释放%黏弹性解%斯蒂尔杰斯积分法%侧压系数
隧道工程%非靜水壓力場%應力釋放%黏彈性解%斯蒂爾傑斯積分法%側壓繫數
수도공정%비정수압력장%응력석방%점탄성해%사체이걸사적분법%측압계수
tunnelling engineering%non-hydrostatic pressure%stress release%viscoelastic solution%Stieltjes integrals%lateral pressure coefficient
在非静水压力场中考虑应力释放的圆形隧道弹性解基础上,先利用对应性原理求解应力释放率λ为常数时隧道的黏弹性解。然后考虑到施工过程中应力逐步释放,隧道内壁(r=R0)处边界条件随开挖面和研究断面之间距离x变化,距离x取决于掘进速度v和时间t,从而边界条件可以表示为时间t的函数。采用斯蒂尔杰斯积分法将常应力释放率时黏弹性解中的λFi(t)(i=1~11)转换为Fi(t)对应力释放率导数dλ(t)的积分形式,可得非静水压力场中考虑应力释放的圆形隧道黏弹性解。该解在侧压系数k0=1时,可转化为静水压力场中考虑应力释放的黏弹性解;在λ=1时,可以转化为非静水压力场中不考虑应力释放的黏弹性解,所以后2种解均为非静水压力场中考虑引起释放圆形隧道黏弹性解的特例。考虑非静水压力场,求解边界条件能较好地反应工程实际中原岩应力分布;考虑应力释放能够反应隧道掘进过程中围岩应力及变形分布情况。故所提出的黏弹性解能够为隧道设计、施工阶段及长期变形及稳定性预测提供理论依据。
在非靜水壓力場中攷慮應力釋放的圓形隧道彈性解基礎上,先利用對應性原理求解應力釋放率λ為常數時隧道的黏彈性解。然後攷慮到施工過程中應力逐步釋放,隧道內壁(r=R0)處邊界條件隨開挖麵和研究斷麵之間距離x變化,距離x取決于掘進速度v和時間t,從而邊界條件可以錶示為時間t的函數。採用斯蒂爾傑斯積分法將常應力釋放率時黏彈性解中的λFi(t)(i=1~11)轉換為Fi(t)對應力釋放率導數dλ(t)的積分形式,可得非靜水壓力場中攷慮應力釋放的圓形隧道黏彈性解。該解在側壓繫數k0=1時,可轉化為靜水壓力場中攷慮應力釋放的黏彈性解;在λ=1時,可以轉化為非靜水壓力場中不攷慮應力釋放的黏彈性解,所以後2種解均為非靜水壓力場中攷慮引起釋放圓形隧道黏彈性解的特例。攷慮非靜水壓力場,求解邊界條件能較好地反應工程實際中原巖應力分佈;攷慮應力釋放能夠反應隧道掘進過程中圍巖應力及變形分佈情況。故所提齣的黏彈性解能夠為隧道設計、施工階段及長期變形及穩定性預測提供理論依據。
재비정수압력장중고필응력석방적원형수도탄성해기출상,선이용대응성원리구해응력석방솔λ위상수시수도적점탄성해。연후고필도시공과정중응력축보석방,수도내벽(r=R0)처변계조건수개알면화연구단면지간거리x변화,거리x취결우굴진속도v화시간t,종이변계조건가이표시위시간t적함수。채용사체이걸사적분법장상응력석방솔시점탄성해중적λFi(t)(i=1~11)전환위Fi(t)대응력석방솔도수dλ(t)적적분형식,가득비정수압력장중고필응력석방적원형수도점탄성해。해해재측압계수k0=1시,가전화위정수압력장중고필응력석방적점탄성해;재λ=1시,가이전화위비정수압력장중불고필응력석방적점탄성해,소이후2충해균위비정수압력장중고필인기석방원형수도점탄성해적특례。고필비정수압력장,구해변계조건능교호지반응공정실제중원암응력분포;고필응력석방능구반응수도굴진과정중위암응력급변형분포정황。고소제출적점탄성해능구위수도설계、시공계단급장기변형급은정성예측제공이론의거。
Firstly,taking use of the correspondence principle,the viscoelastic solution for the circular tunnel with constant ratio of stress release is obtained,based on the elastic solution of the circular tunnel under non-hydrostatic pressure. Then,the stress is released step by step during construction,and the boundary condition at the intrados will change along with the distance x between excavating face and the studred section. The distance x could be expressed as a function of excavation speed v and time t. so the boundary condition could be expressed as a function of time t and speed v. According to the Stieltjes integrals, the items ofλFi(t)(i=1-11) in the solution for constant ratio of stress release are replaced with the integrals of Fi(t) with respect to dλ(t). The solution for the circular tunnel under non-hydrostatic pressure considering the ratio of stress release could be obtained. When the ratio of horizontal pressure coefficients k0=1,the solution could be transformed into the viscoelastic solution for the circular tunnel under hydrostatic pressure considering the ratio of stress release. When the ratio of stress release λ=1,the solution will be transformed into the viscoelastic solution for the circular tunnel under non-hydrostatic pressure without considering the ratio of stress release. So the latter two solutions are special cases of the solution in the paper. The non-hydrostatic pressure assumption accords with the engineering practice,and the ratio of stress release indicates the effects of construction procedure on the stress and deformation of rock. The results could be a reference for the design and construction of tunnels.