鞍山师范学院学报
鞍山師範學院學報
안산사범학원학보
JOURNAL OF ANSHAN TEACHERS COLLEGE
2013年
4期
46-49
,共4页
粒子群%K-means%聚类%IPSOFCM
粒子群%K-means%聚類%IPSOFCM
입자군%K-means%취류%IPSOFCM
Particle swarm%K-means%Clustering%IPSOFCM
为了解决K-means算法中对于初值的敏感,提出了一种基于粒子群的改进的K-means聚类算法(IPSOFCM)。在K-means算法中引入粒子群算法,可有效提高算法的全局搜索能力,有助于粒子更容易跳出局部束缚。实验结果证明,IPSOFCM算法聚类准确度高,稳定性好。
為瞭解決K-means算法中對于初值的敏感,提齣瞭一種基于粒子群的改進的K-means聚類算法(IPSOFCM)。在K-means算法中引入粒子群算法,可有效提高算法的全跼搜索能力,有助于粒子更容易跳齣跼部束縳。實驗結果證明,IPSOFCM算法聚類準確度高,穩定性好。
위료해결K-means산법중대우초치적민감,제출료일충기우입자군적개진적K-means취류산법(IPSOFCM)。재K-means산법중인입입자군산법,가유효제고산법적전국수색능력,유조우입자경용역도출국부속박。실험결과증명,IPSOFCM산법취류준학도고,은정성호。
This paper puts forward a kind of improved K-means clustering algorithm based on Particle Swarm (IPSOFCM),in order to solve the K-means algorithm for the initial value sensitivity .Introducing the particle swarm algorithm in the K-means algorithm ,which can effectively improve the algorithm ’ s global search ability and contribute to the particles are more easily jump out of local bonds .Experimental results show that the IP-SOFCM clustering algorithm is with high accuracy ,and good stability .