纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2013年
5期
484-488
,共5页
粘连度%毁裂度%完全k叉树
粘連度%燬裂度%完全k扠樹
점련도%훼렬도%완전k차수
the tenacity%rupture degree%complete k-ary trees
相对于其他网络抗毁性的描述指标来说,图的粘连度是比较理想,也是比较合理的刻画参数。而完全 k 叉树作为重要的网络结构被广泛地应用在通信网和嵌入式系统芯片的优化设计方面。本文通过优化组合方法界定了完全k 叉树的粘连度和毁裂度。从某种程度刻画了网络的抗毁性,为网络设计提供了一种客观的理论依据。完全k 叉树的粘连度为1k+1(kh+1?1),如h是奇数;k 1+1(kh+1+1),如h是偶数。完全k 叉树的毁裂度为(2k?1)k h?12?1 k?1,如h是奇数;k h+22?1k?1,如h是偶数。
相對于其他網絡抗燬性的描述指標來說,圖的粘連度是比較理想,也是比較閤理的刻畫參數。而完全 k 扠樹作為重要的網絡結構被廣汎地應用在通信網和嵌入式繫統芯片的優化設計方麵。本文通過優化組閤方法界定瞭完全k 扠樹的粘連度和燬裂度。從某種程度刻畫瞭網絡的抗燬性,為網絡設計提供瞭一種客觀的理論依據。完全k 扠樹的粘連度為1k+1(kh+1?1),如h是奇數;k 1+1(kh+1+1),如h是偶數。完全k 扠樹的燬裂度為(2k?1)k h?12?1 k?1,如h是奇數;k h+22?1k?1,如h是偶數。
상대우기타망락항훼성적묘술지표래설,도적점련도시비교이상,야시비교합리적각화삼수。이완전 k 차수작위중요적망락결구피엄범지응용재통신망화감입식계통심편적우화설계방면。본문통과우화조합방법계정료완전k 차수적점련도화훼렬도。종모충정도각화료망락적항훼성,위망락설계제공료일충객관적이론의거。완전k 차수적점련도위1k+1(kh+1?1),여h시기수;k 1+1(kh+1+1),여h시우수。완전k 차수적훼렬도위(2k?1)k h?12?1 k?1,여h시기수;k h+22?1k?1,여h시우수。
Compared with other indicators for description of network anti-destroying ability, the tenacity degree of graph is ideal and also is a reasonable characterization parameter. As an important network structure, the complete k-ary trees is widely used in optimization design of communication network and embedded system chip. This article defines the tenacity and rupture degree of complete k-ary tree in the way of optimum combination. Describe the anti-destroying ability of network and by the way provide an objective theoretical basis for network designing. The tenacity of complete k-ary trees is k 1+1 (kh+1?1), if h is an odd number;the tenacity of complete k-ary trees is k 1+1 (kh+1+1), if h is an even number. The rupture degree of complete k-ary trees is (2k?1)k h?1 2 ?1 k?1 , if h is an odd number;the rupture degree of complete k-ary trees is k h+2 2 ?1k?1 , if h is an even number.