纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2013年
5期
450-457
,共8页
积分边界条件%分数阶微分方程%不动点定理%正解
積分邊界條件%分數階微分方程%不動點定理%正解
적분변계조건%분수계미분방정%불동점정리%정해
integral boundary conditions%fractional differential equation%fixed point theorem%positive solution
研究了含积分边界条件的分数阶微分方程的边值问题,首先给出格林函数及性质,其次将问题转化为一个等价的积分方程,最后应用 Krasnoselkii 及 Leggett-Williams不动点定理得到了一个及多个正解的存在性,推广了以往的结果。
研究瞭含積分邊界條件的分數階微分方程的邊值問題,首先給齣格林函數及性質,其次將問題轉化為一箇等價的積分方程,最後應用 Krasnoselkii 及 Leggett-Williams不動點定理得到瞭一箇及多箇正解的存在性,推廣瞭以往的結果。
연구료함적분변계조건적분수계미분방정적변치문제,수선급출격림함수급성질,기차장문제전화위일개등개적적분방정,최후응용 Krasnoselkii 급 Leggett-Williams불동점정리득도료일개급다개정해적존재성,추엄료이왕적결과。
In this paper, we consider the existence of positive solutions for fractional boundary value problems with integral boundary conditions. First, we give the properties of Green′s function. Second, the problem has been reduced to the equivalent Fredholm integral equation. Finally, using Krasnoselkii fixed point theorem and Leggett-Williams fixed point theorem, some results on the existence of positive solutions are obtained. The work is an extension of the previous results.