山东大学学报(理学版)
山東大學學報(理學版)
산동대학학보(이학판)
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE)
2013年
10期
86-89
,共4页
亚纯函数%零点%惟一性%q-差分
亞純函數%零點%惟一性%q-差分
아순함수%영점%유일성%q-차분
meromorphic function%zero%uniqueness%q-difference
利用Nevanlinna理论,讨论了亚纯函数q-差分多项式[fn(z)(fm(z)-1)∏d i=1 f(qiz)](k)和[fn(z)(fm(z)-i=1▽qi f(z)](k)的值分布问题,推广了已有文献的结果,这里n,m,k,d是正整数。1)∏d
利用Nevanlinna理論,討論瞭亞純函數q-差分多項式[fn(z)(fm(z)-1)∏d i=1 f(qiz)](k)和[fn(z)(fm(z)-i=1▽qi f(z)](k)的值分佈問題,推廣瞭已有文獻的結果,這裏n,m,k,d是正整數。1)∏d
이용Nevanlinna이론,토론료아순함수q-차분다항식[fn(z)(fm(z)-1)∏d i=1 f(qiz)](k)화[fn(z)(fm(z)-i=1▽qi f(z)](k)적치분포문제,추엄료이유문헌적결과,저리n,m,k,d시정정수。1)∏d
Applying the theory of Nevanlinna, investigate the value distribution of q-difference polynomials of mero-morphic functions fn(z)(fm(z)-1)∏d i=1 f(qiz) (k) and fn(z)(fm(z)-1)∏d i=1▽qi f(z) (k) , where n,m,k,d are pos-itive integers, and obtained some results which improved some existing results.