山东大学学报(理学版)
山東大學學報(理學版)
산동대학학보(이학판)
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE)
2013年
10期
62-67,77
,共7页
正解%Caputo导数%边值问题%不动点定理
正解%Caputo導數%邊值問題%不動點定理
정해%Caputo도수%변치문제%불동점정리
positive solutions%Caputo derivative%boundary value problems%fixed point theorem
研究了一类具有Caputo导数的分数阶微分方程边值问题正解的存在性,其中边界条件中含有分数阶导数,并且非线性项f:[0,1]×[0,+∞)→[0,+∞)满足Caratheodory条件。利用Krasnosel’ skii锥上的不动点定理,得到了该边值问题至少存在一个正解和两个正解的充分条件。
研究瞭一類具有Caputo導數的分數階微分方程邊值問題正解的存在性,其中邊界條件中含有分數階導數,併且非線性項f:[0,1]×[0,+∞)→[0,+∞)滿足Caratheodory條件。利用Krasnosel’ skii錐上的不動點定理,得到瞭該邊值問題至少存在一箇正解和兩箇正解的充分條件。
연구료일류구유Caputo도수적분수계미분방정변치문제정해적존재성,기중변계조건중함유분수계도수,병차비선성항f:[0,1]×[0,+∞)→[0,+∞)만족Caratheodory조건。이용Krasnosel’ skii추상적불동점정리,득도료해변치문제지소존재일개정해화량개정해적충분조건。
The paper is concerned with the existence of solutions for a class of fractional differential equations boundary value problems with Caputo derivative, where there exist fractional derivative in the boundary conditions and the nonlin-ear term f:[0,1] ×[0,∞)→[0,∞) satisfies Caratheodory conditions.By using the Krasnosel’skii fixed theorem on a cone, the sufficient conditions for the problem at least one and two positive solutions are obtained.