山东大学学报(理学版)
山東大學學報(理學版)
산동대학학보(이학판)
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE)
2013年
10期
9-13
,共5页
Hyers-Ulam-Rassias稳定性%二元混合五次函数方程%Banach空间
Hyers-Ulam-Rassias穩定性%二元混閤五次函數方程%Banach空間
Hyers-Ulam-Rassias은정성%이원혼합오차함수방정%Banach공간
Hyers-Ulam-Rassias stability%the mixed quintic functional equation of two variables%Banach space
设X和Y分别是实向量空间和实Banach空间,映射f:X2→Y称为二元混合五次函数是指任给x1, x2, y1, y2∈X都满足方程f(x1+x2,2y1+y2)+f(x1+x2,2y1-y2)+f(x1-x2,2y1+y2)+f(x1-x2,2y1-y2)=4f(x1, y1+y2)+4f(x2,y1+y2)+4f(x1,y1-y2)+4f(x2,y1-y2)+24f(x1,y1)+24f(x2,y1)。给出了二元混合五次方程的一般解,并证明了它的Hyers-Ulam-Rassias稳定性。
設X和Y分彆是實嚮量空間和實Banach空間,映射f:X2→Y稱為二元混閤五次函數是指任給x1, x2, y1, y2∈X都滿足方程f(x1+x2,2y1+y2)+f(x1+x2,2y1-y2)+f(x1-x2,2y1+y2)+f(x1-x2,2y1-y2)=4f(x1, y1+y2)+4f(x2,y1+y2)+4f(x1,y1-y2)+4f(x2,y1-y2)+24f(x1,y1)+24f(x2,y1)。給齣瞭二元混閤五次方程的一般解,併證明瞭它的Hyers-Ulam-Rassias穩定性。
설X화Y분별시실향량공간화실Banach공간,영사f:X2→Y칭위이원혼합오차함수시지임급x1, x2, y1, y2∈X도만족방정f(x1+x2,2y1+y2)+f(x1+x2,2y1-y2)+f(x1-x2,2y1+y2)+f(x1-x2,2y1-y2)=4f(x1, y1+y2)+4f(x2,y1+y2)+4f(x1,y1-y2)+4f(x2,y1-y2)+24f(x1,y1)+24f(x2,y1)。급출료이원혼합오차방정적일반해,병증명료타적Hyers-Ulam-Rassias은정성。
Let X be a vector space and Y be a Banach space over the real field, R.A mapping f:X2→Y from X2 into Y is called a mixed quintic functional equation of two variables if it satisfies that f(x1 +x2, 2y1 +y2)+f(x1 +x2,2y1 -y2)+f(x1 -x2, 2y1 +y2)+f(x1 -x2, 2y1 -y2) =4f(x1,y1 +y2) +4f(x2, y1 +y2) +4f(x1,y1 -y2) +4f(x2, y1 -y2) +24f(x1, y1)+24f(x2, y1) for all x1, x2, y1, y2∈X.The general solution of the mixed quintic functional equation of two variables is obtained and the Hyers-Ulam-Rassias stability for it is proved.