光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2013年
11期
3050-3054
,共5页
赵进辉%袁海超%刘木华%肖海斌%洪茜%徐将
趙進輝%袁海超%劉木華%肖海斌%洪茜%徐將
조진휘%원해초%류목화%초해빈%홍천%서장
同步荧光光谱%粒子群优化算法%支持向量回归%小波去噪%四环素%鸭肉
同步熒光光譜%粒子群優化算法%支持嚮量迴歸%小波去譟%四環素%鴨肉
동보형광광보%입자군우화산법%지지향량회귀%소파거조%사배소%압육
Synchronous fluorescence spectrum%Particle swarm optimization algorithm%Support vector regression%Wavelet de-noising%Tetracycline%Duck meat
四环素在NaO H存在的条件下能降解生成具有强荧光特性的异四环素,应用同步荧光光谱结合小波去噪、粒子群优化算法(PSO)和支持向量回归(SVR)建立鸭肉中四环素残留含量的预测模型,可实现鸭肉中四环素残留含量的快速测定和提高预测模型的精度。首先应用平行因子分析法(PARAFAC )确定检测鸭肉中四环素含量的最佳波长差Δλ为70 nm ;然后对同步荧光光谱进行db6小波的2层分解的小波去噪及去噪后的光谱归一化处理,并利用 PSO筛选出了6个荧光特征波长;最后应用 PSO优化SVR模型参数(c , g),进而对在PSO筛选的特征波长光谱条件下建立的PSO-SVR ,PLS ,PCR模型以及在全光谱条件下建立的PSO-SVR模型进行性能比较,结果表明,以在PSO筛选的特征波长光谱条件下建立的PSO-SVR模型预测能力更强,其预测集的相关系数(r)和均方根误差(RMSEP)分别为0.9520和17.6 mg · kg -1。说明PSO能够有效提取鸭肉中残留四环素所对应的荧光特征波长,且PSO-SVR预测模型能满足鸭肉中残留四环素的快速测定要求。
四環素在NaO H存在的條件下能降解生成具有彊熒光特性的異四環素,應用同步熒光光譜結閤小波去譟、粒子群優化算法(PSO)和支持嚮量迴歸(SVR)建立鴨肉中四環素殘留含量的預測模型,可實現鴨肉中四環素殘留含量的快速測定和提高預測模型的精度。首先應用平行因子分析法(PARAFAC )確定檢測鴨肉中四環素含量的最佳波長差Δλ為70 nm ;然後對同步熒光光譜進行db6小波的2層分解的小波去譟及去譟後的光譜歸一化處理,併利用 PSO篩選齣瞭6箇熒光特徵波長;最後應用 PSO優化SVR模型參數(c , g),進而對在PSO篩選的特徵波長光譜條件下建立的PSO-SVR ,PLS ,PCR模型以及在全光譜條件下建立的PSO-SVR模型進行性能比較,結果錶明,以在PSO篩選的特徵波長光譜條件下建立的PSO-SVR模型預測能力更彊,其預測集的相關繫數(r)和均方根誤差(RMSEP)分彆為0.9520和17.6 mg · kg -1。說明PSO能夠有效提取鴨肉中殘留四環素所對應的熒光特徵波長,且PSO-SVR預測模型能滿足鴨肉中殘留四環素的快速測定要求。
사배소재NaO H존재적조건하능강해생성구유강형광특성적이사배소,응용동보형광광보결합소파거조、입자군우화산법(PSO)화지지향량회귀(SVR)건립압육중사배소잔류함량적예측모형,가실현압육중사배소잔류함량적쾌속측정화제고예측모형적정도。수선응용평행인자분석법(PARAFAC )학정검측압육중사배소함량적최가파장차Δλ위70 nm ;연후대동보형광광보진행db6소파적2층분해적소파거조급거조후적광보귀일화처리,병이용 PSO사선출료6개형광특정파장;최후응용 PSO우화SVR모형삼수(c , g),진이대재PSO사선적특정파장광보조건하건립적PSO-SVR ,PLS ,PCR모형이급재전광보조건하건립적PSO-SVR모형진행성능비교,결과표명,이재PSO사선적특정파장광보조건하건립적PSO-SVR모형예측능력경강,기예측집적상관계수(r)화균방근오차(RMSEP)분별위0.9520화17.6 mg · kg -1。설명PSO능구유효제취압육중잔류사배소소대응적형광특정파장,차PSO-SVR예측모형능만족압육중잔류사배소적쾌속측정요구。
Tetracycline under the condition of NaOH could be degraded to iso tetracycline which has strong fluorescent character-istic ,and the prediction model of tetracycline contents in duck meat was developed with the combination of synchronous fluores-cence spectrum ,wavelet de-noising ,particle swarm optimization algorithm (PSO) and support vector regression (SVR) ,and it could realize the rapid prediction of tetracycline contents in duck meat and improve the accuracy of prediction model .In the process ,70 nm was selected as the optimum wavelength difference for the determination of tetracycline contents in duck meat by using parallel factor analysis (PARAFAC) .Secondly ,the db6 wavelet with 2 levels decomposition was used to reduce the noise of synchronous fluorescence spectrum ,and the spectrum after wavelet de-noising was normalized ,and 6 characteristic wave-lengths were selected by using PSO .Lastly ,the SVR model parameters (c ,g) were optimized by using PSO .Furthermore ,the performances of the models of PSO-SVR ,PLS and PCR under the spectral condition of characteristic wavelengths selected by u-sing PSO ,and PSO-SVR under the spectral condition of full spectrum were compared .The experimental results showed that the predictive ability of the model of PSO-SVR under the spectral condition of characteristic wavelengths selected by using PSO was strongest ,and the correlation coefficient and the root mean squared error of prediction were 0.952 0 and 17.6 mg · kg -1 , respectively .This work proved that PSO could extract effectively the characteristic wavelengths of tetracycline in duck meat ,and the model of PSO-SVR could satisfy the request of rapid determination of tetracycline contents in duck meat .