食品安全质量检测学报
食品安全質量檢測學報
식품안전질량검측학보
FOOD SAFETY AND QUALITY DETECTION TECHNOLOGY
2014年
5期
1468-1474
,共7页
刘原瑗%宁保安%白家磊%彭媛%张笑言%姜随意%高志贤
劉原瑗%寧保安%白傢磊%彭媛%張笑言%薑隨意%高誌賢
류원원%저보안%백가뢰%팽원%장소언%강수의%고지현
纳米金%多壁碳纳米管%壳聚糖%孔雀石绿%电化学分析
納米金%多壁碳納米管%殼聚糖%孔雀石綠%電化學分析
납미금%다벽탄납미관%각취당%공작석록%전화학분석
Au nanoparticles (AuNPs)%multi-walled carbon nanotubes (MWNTs)%chitosan (CS)%mala-chite green (MG)%electrochemical analysis
目的:制备基于纳米金-壳聚糖/多壁碳纳米管修饰的玻碳电极,用于检测水样中微量的孔雀石绿。方法实验利用电沉积法首先在玻碳电极表面沉积金纳米颗粒,然后利用溶剂蒸发法在纳米金层表面再修饰混有壳聚糖的羧基化多壁碳纳米管。实验设计以多壁碳纳米管/纳米金共修饰的玻碳电极作为电化学传感元件,采用循环伏安法(CV)和微分脉冲伏安法(DPV)检测MG。结果表明电极的修饰膜可加速MG的电子传递速率,促进电位变化,并显著增强 MG 的氧化峰电流。得到的差分脉冲峰电流与孔雀石绿浓度对数值在2.5×10?9~2.5×10?4 mol/L范围内呈良好线性关系,检测限为9.3×10?10 mol/L。结论本研究制备的基于纳米金-壳聚糖/多壁碳纳米管修饰玻碳电极的电化学传感器适于孔雀石绿的快速、灵敏检测。
目的:製備基于納米金-殼聚糖/多壁碳納米管脩飾的玻碳電極,用于檢測水樣中微量的孔雀石綠。方法實驗利用電沉積法首先在玻碳電極錶麵沉積金納米顆粒,然後利用溶劑蒸髮法在納米金層錶麵再脩飾混有殼聚糖的羧基化多壁碳納米管。實驗設計以多壁碳納米管/納米金共脩飾的玻碳電極作為電化學傳感元件,採用循環伏安法(CV)和微分脈遲伏安法(DPV)檢測MG。結果錶明電極的脩飾膜可加速MG的電子傳遞速率,促進電位變化,併顯著增彊 MG 的氧化峰電流。得到的差分脈遲峰電流與孔雀石綠濃度對數值在2.5×10?9~2.5×10?4 mol/L範圍內呈良好線性關繫,檢測限為9.3×10?10 mol/L。結論本研究製備的基于納米金-殼聚糖/多壁碳納米管脩飾玻碳電極的電化學傳感器適于孔雀石綠的快速、靈敏檢測。
목적:제비기우납미금-각취당/다벽탄납미관수식적파탄전겁,용우검측수양중미량적공작석록。방법실험이용전침적법수선재파탄전겁표면침적금납미과립,연후이용용제증발법재납미금층표면재수식혼유각취당적최기화다벽탄납미관。실험설계이다벽탄납미관/납미금공수식적파탄전겁작위전화학전감원건,채용순배복안법(CV)화미분맥충복안법(DPV)검측MG。결과표명전겁적수식막가가속MG적전자전체속솔,촉진전위변화,병현저증강 MG 적양화봉전류。득도적차분맥충봉전류여공작석록농도대수치재2.5×10?9~2.5×10?4 mol/L범위내정량호선성관계,검측한위9.3×10?10 mol/L。결론본연구제비적기우납미금-각취당/다벽탄납미관수식파탄전겁적전화학전감기괄우공작석록적쾌속、령민검측。
Objectives To prepare an AuNPs-chitosan/MWNTs modified GCE for detection of the trace malachite green in water. Methods First, the AuNPs was modified on the GCE by electrodeposition, and then further modified with a mix of MWNTs-COOH and chitosan by evaporating solvent method. The multi-walled carbon nantubes and Au nanoparticles co-modified GCE was described for the determination of malachite green (MG). The electrochemical profile of MG was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Results The results suggested that the modified film on the GCE facilitated the electron transfer of MG in terms of a potential shift and then significantly enhanced the oxidation peak current of MG. The obtained DPV current peak showed a good linear relation with the logarithm of the concentration of MG in the range from 2.5×10?9 to 2.5×10?4 mol/L, and the detection limit was 9.3×10?10 mol/L. Conclusion The prepared GCE for electrochemical sensor was applicable to detecting MG, rapidly and sensitively.