中国医疗器械杂志
中國醫療器械雜誌
중국의료기계잡지
CHINESE JOURNAL OF MEDICAL INSTRUMENTATION
2014年
2期
94-97,101
,共5页
高用贺%李跃杰%王立伟%张明蓉
高用賀%李躍傑%王立偉%張明蓉
고용하%리약걸%왕립위%장명용
视网膜%光学相干层析%层状结构%非线性复扩散滤波%形态学操作
視網膜%光學相榦層析%層狀結構%非線性複擴散濾波%形態學操作
시망막%광학상간층석%층상결구%비선성복확산려파%형태학조작
retina%optical coherence tomography%layer structure%nonlinear complex diffusion filtering%morphological operations
目的利用算法实现对视网膜层状结构的自动分割及定量分析是光学相干层析成像技术应用于青光眼及视网膜病变早期诊断的关键。现存处理方法对图像质量要求较高且可靠性不高。该文拟利用改进的非线性复合扩散滤波等方法解决这个问题。方法首先对自主搭建的OCT系统获得的20幅视网膜图像,通过自动阈值、改进的非线性复合扩散滤波、形态学操作、峰值探测等综合算法,进行分割,比较准确的分割出内界膜(ILM)、外核层(ONL)、内节层和外节层(IS/OS)以及视网膜色素上皮与脉络膜层(RPE_ChCap)边界,最后测量得到视网膜的厚度。结果本算法对视网膜的分割与专家手动测量有较好的一致性,视网膜中心凹测量结果与Zeiss Stratus OCT视网膜中心厚度212±20μm数据一致。结论该文提出的算法有希望应用于临床视网膜疾病的诊断。
目的利用算法實現對視網膜層狀結構的自動分割及定量分析是光學相榦層析成像技術應用于青光眼及視網膜病變早期診斷的關鍵。現存處理方法對圖像質量要求較高且可靠性不高。該文擬利用改進的非線性複閤擴散濾波等方法解決這箇問題。方法首先對自主搭建的OCT繫統穫得的20幅視網膜圖像,通過自動閾值、改進的非線性複閤擴散濾波、形態學操作、峰值探測等綜閤算法,進行分割,比較準確的分割齣內界膜(ILM)、外覈層(ONL)、內節層和外節層(IS/OS)以及視網膜色素上皮與脈絡膜層(RPE_ChCap)邊界,最後測量得到視網膜的厚度。結果本算法對視網膜的分割與專傢手動測量有較好的一緻性,視網膜中心凹測量結果與Zeiss Stratus OCT視網膜中心厚度212±20μm數據一緻。結論該文提齣的算法有希望應用于臨床視網膜疾病的診斷。
목적이용산법실현대시망막층상결구적자동분할급정량분석시광학상간층석성상기술응용우청광안급시망막병변조기진단적관건。현존처리방법대도상질량요구교고차가고성불고。해문의이용개진적비선성복합확산려파등방법해결저개문제。방법수선대자주탑건적OCT계통획득적20폭시망막도상,통과자동역치、개진적비선성복합확산려파、형태학조작、봉치탐측등종합산법,진행분할,비교준학적분할출내계막(ILM)、외핵층(ONL)、내절층화외절층(IS/OS)이급시망막색소상피여맥락막층(RPE_ChCap)변계,최후측량득도시망막적후도。결과본산법대시망막적분할여전가수동측량유교호적일치성,시망막중심요측량결과여Zeiss Stratus OCT시망막중심후도212±20μm수거일치。결론해문제출적산법유희망응용우림상시망막질병적진단。
Objective Using the algorithm on the layered structure of the retina and quantitative analysis of the automatic segmentation technique is the key to the early diagnosis of glaucoma and other retinopathy on optical coherence tomography. Existing methods require high qulity image and have low reliability. This paper used the improved complex nonlinear diffuse filtering and other methods to solve this problem. Methods This paper includes algorithm such as automatic threshold, improved complex nonlinear diffusion filtering, morphological operations and peak detection. Use the method for the segmentation of 20 retinal layers images which acquired on the self-builded OCT system, the boundary of inner limiting membrane(ILM), outer nuclear layer(ONL), the photoreceptor segments(IS/OS) and the RPE_ChCap layer are detected accurately. At last, the photoreceptor layer thickness is measured. Results The results of segmentation and measurement are good corresponded with expert manual segmentation and measurements, retinal foveal measurements data is consistent with Zeiss Stratus OCT central retinal thickness 212±20μm. Conclusion The algorithm proposed is prospective applied to clinical diagnosis of retinal diseases.