装备环境工程
裝備環境工程
장비배경공정
EQUIPMENT ENVIRONMENTAL ENGINEERING
2014年
4期
70-76,111
,共8页
粘结铜%腐蚀溶解规律%电化学行为
粘結銅%腐蝕溶解規律%電化學行為
점결동%부식용해규률%전화학행위
bonded copper%corrosion dissolution rule%electrochemistry behavior
目的:获得经济且环境友好型化学溶解高温耐磨粘结铜的工艺。方法采用正交实验获得化学溶解除铜的最佳工艺参数,利用电化学手段测试铜及炮管基体在两种溶液体系最优配方中的 E-t 曲线和极化曲线,通过连续失重法分析铜在腐蚀溶液中的腐蚀溶解规律,并观察溶解后的表面形貌。结果化学溶解除铜工艺最优配方分别为过氧化氢-柠檬酸(H2 O2(质量分数为0.8%)+C6 H8 O7(质量浓度为6 g / L)+温度θ为30℃+pH 值为10)、溴酸钾-柠檬酸(KBrO3(质量浓度为30 g / L)+C6 H8 O7(质量浓度为30 g / L)+温度为30℃+ pH 值为10)。腐蚀溶解初始阶段,铜基体表面氧化膜逐渐溶解破坏,腐蚀电位变负,溶解速率加快,随后铜基体裸露,进入稳定溶解过程,反应速率逐渐趋于稳定。在溴酸钾-柠檬酸体系中铜的自腐蚀电流密度比过氧化氢-柠檬酸体系中高2个数量极,表现出更强的阳极活化能力和腐蚀溶解速度。结论铜在两种溶液体系中表现出快速稳定的溶解速度,炮管基体的腐蚀速率比铜小2~3个数量级,具有良好的耐蚀能力。
目的:穫得經濟且環境友好型化學溶解高溫耐磨粘結銅的工藝。方法採用正交實驗穫得化學溶解除銅的最佳工藝參數,利用電化學手段測試銅及砲管基體在兩種溶液體繫最優配方中的 E-t 麯線和極化麯線,通過連續失重法分析銅在腐蝕溶液中的腐蝕溶解規律,併觀察溶解後的錶麵形貌。結果化學溶解除銅工藝最優配方分彆為過氧化氫-檸檬痠(H2 O2(質量分數為0.8%)+C6 H8 O7(質量濃度為6 g / L)+溫度θ為30℃+pH 值為10)、溴痠鉀-檸檬痠(KBrO3(質量濃度為30 g / L)+C6 H8 O7(質量濃度為30 g / L)+溫度為30℃+ pH 值為10)。腐蝕溶解初始階段,銅基體錶麵氧化膜逐漸溶解破壞,腐蝕電位變負,溶解速率加快,隨後銅基體裸露,進入穩定溶解過程,反應速率逐漸趨于穩定。在溴痠鉀-檸檬痠體繫中銅的自腐蝕電流密度比過氧化氫-檸檬痠體繫中高2箇數量極,錶現齣更彊的暘極活化能力和腐蝕溶解速度。結論銅在兩種溶液體繫中錶現齣快速穩定的溶解速度,砲管基體的腐蝕速率比銅小2~3箇數量級,具有良好的耐蝕能力。
목적:획득경제차배경우호형화학용해고온내마점결동적공예。방법채용정교실험획득화학용해제동적최가공예삼수,이용전화학수단측시동급포관기체재량충용액체계최우배방중적 E-t 곡선화겁화곡선,통과련속실중법분석동재부식용액중적부식용해규률,병관찰용해후적표면형모。결과화학용해제동공예최우배방분별위과양화경-저몽산(H2 O2(질량분수위0.8%)+C6 H8 O7(질량농도위6 g / L)+온도θ위30℃+pH 치위10)、추산갑-저몽산(KBrO3(질량농도위30 g / L)+C6 H8 O7(질량농도위30 g / L)+온도위30℃+ pH 치위10)。부식용해초시계단,동기체표면양화막축점용해파배,부식전위변부,용해속솔가쾌,수후동기체라로,진입은정용해과정,반응속솔축점추우은정。재추산갑-저몽산체계중동적자부식전류밀도비과양화경-저몽산체계중고2개수량겁,표현출경강적양겁활화능력화부식용해속도。결론동재량충용액체계중표현출쾌속은정적용해속도,포관기체적부식속솔비동소2~3개수량급,구유량호적내식능력。
Objective To obtain the economical and environment friendly chemical dissolution process of wear-resistant bonded copper. Methods The optimized chemical dissolution processes were obtained from a series of orthogonal experi-ment. Corrosion dissolution rule and electrochemical behavior of copper and artillery barrel in chemical solutions were in-vestigated using the continuous weight loss method, polarization curve and E-t curve. The morphology of the copper in the corrosion process was observed as well. Results The chemical dissolution processes were hydrogen peroxide-citric acid sys-tem-H2 O2(0. 8% )+C6 H8 O7(6 g/ L)+θ(30℃ )+ pH(10), and potassium bromate-citric acid system-KBrO3(30 g/ L)+C6 H8 O7(30 g/ L)+θ(30 ℃ ) + pH (10), respectively. In the electrochemical test, the oxidation film of copper was grad-ually dissolved during the initial period, then the corrosion potential became negative with the increase of the dissolution rate. With the extension of time, copper matrix was exposed and entered the stable dissolution process and the dissolution rate tended to be stable. The corrosion current density derived from the polarization curve of the copper in potassium bro-mate-citric acid solution was two orders of magnitude greater than that in the hydrogen peroxide-citric acid solution, sugges-ting a much stronger ability of anodic activation. Conclusion Copper exhibited fast and stable dissolution rate, and the cur-rent density of artillery barrel was 2 ~ 3 orders of magnitude lower than that of the copper in both chemical solutions, sug-gesting excellent anti-corrosion performance.