表面技术
錶麵技術
표면기술
SURFACE TECHNOLOGY
2014年
4期
110-114,141
,共6页
毛杰%宋进兵%邓畅光%黄科
毛傑%宋進兵%鄧暢光%黃科
모걸%송진병%산창광%황과
超音速等离子喷涂%Al2 O3 涂层%喷涂参数%显微结构%工艺优化%显微硬度
超音速等離子噴塗%Al2 O3 塗層%噴塗參數%顯微結構%工藝優化%顯微硬度
초음속등리자분도%Al2 O3 도층%분도삼수%현미결구%공예우화%현미경도
supersonic atmosphere plasma spraying%Al2 O3 coating%spraying parameters%microstructure%process optimiza-tion%microhardness
目的:初步明确超音速等离子喷涂参数对涂层的影响规律,优化工艺参数。方法采用超音速等离子喷涂技术制备 Al2 O3陶瓷涂层,对涂层进行表征,分析喷涂电流 I、等离子发生气体压力 Pair、喷距 d对涂层显微结构的影响。基于涂层显微硬度 HV 设计工艺优化试验,建立喷涂参数与显微硬度之间的回归方程。结果 I=260 A 或 Pair =0.55 MPa 时,涂层是α-Al2 O3和γ-Al2 O3双相复合结构;I =340 A 或 Pair =0.35 MPa 时,涂层几乎全由γ-Al2 O3相组成,基本不含有未熔颗粒;喷距变化对涂层相组成的影响不显著。 I 或 d 增大,或者 P
目的:初步明確超音速等離子噴塗參數對塗層的影響規律,優化工藝參數。方法採用超音速等離子噴塗技術製備 Al2 O3陶瓷塗層,對塗層進行錶徵,分析噴塗電流 I、等離子髮生氣體壓力 Pair、噴距 d對塗層顯微結構的影響。基于塗層顯微硬度 HV 設計工藝優化試驗,建立噴塗參數與顯微硬度之間的迴歸方程。結果 I=260 A 或 Pair =0.55 MPa 時,塗層是α-Al2 O3和γ-Al2 O3雙相複閤結構;I =340 A 或 Pair =0.35 MPa 時,塗層幾乎全由γ-Al2 O3相組成,基本不含有未鎔顆粒;噴距變化對塗層相組成的影響不顯著。 I 或 d 增大,或者 P
목적:초보명학초음속등리자분도삼수대도층적영향규률,우화공예삼수。방법채용초음속등리자분도기술제비 Al2 O3도자도층,대도층진행표정,분석분도전류 I、등리자발생기체압력 Pair、분거 d대도층현미결구적영향。기우도층현미경도 HV 설계공예우화시험,건립분도삼수여현미경도지간적회귀방정。결과 I=260 A 혹 Pair =0.55 MPa 시,도층시α-Al2 O3화γ-Al2 O3쌍상복합결구;I =340 A 혹 Pair =0.35 MPa 시,도층궤호전유γ-Al2 O3상조성,기본불함유미용과립;분거변화대도층상조성적영향불현저。 I 혹 d 증대,혹자 P
Objective To preliminarily clarify the effect of parameters on coatings in supersonic plasma spraying and to obtain the optimal process parameters. Methods Al2 O3 ceramic coatings were prepared by the supersonic plasma spraying technique. The microstructure and properties of Al2 O3 coating were characterized and the effect of spraying parameters such as spraying current, pressure of plasma gas and spray distance were also discussed. According to the response surface methodology, the optimization ex-periment with three factors and three levels was designed and the regression equation was established between the influencing factors and the response value, thickness. Results When I=260 A or Pair =0. 55 MPa, the coating was a dual-phase composite structure consisting of α-Al2 O3 and γ-Al2 O3 . When I=340 A or Pair = 0. 35 MPa, the coating was almost fully deposited into the γ-Al2 O3 phase, substantially containing no unmelted particles. Change in spraying distance had no significant effect on the phase composi-tion of the coating. When I or d increased or Pair reduced, HV tended to increase. Conclusion In the experimental range, the opti-mal process parameters for microhardness of supersonic plasma spray were Pair =0. 35 MPa, I=340 A and d=230 mm.