计算机科学与探索
計算機科學與探索
계산궤과학여탐색
JOURNAL OF FRONTIERS OF COMPUTER SCIENCE & TECHNOLOGY
2014年
8期
989-1001
,共13页
吴伟昆%杨隆浩%傅仰耿%张立群%巩晓婷
吳偉昆%楊隆浩%傅仰耿%張立群%鞏曉婷
오위곤%양륭호%부앙경%장립군%공효정
置信规则库(BRB)%参数训练%非线性优化问题%加速梯度求法
置信規則庫(BRB)%參數訓練%非線性優化問題%加速梯度求法
치신규칙고(BRB)%삼수훈련%비선성우화문제%가속제도구법
belief rule base (BRB)%parameter training%nonlinear optimization problem%the accelerating of gradient algorithm
置信规则库(belief rule base,BRB)的参数训练问题实质上是一个带有约束条件的非线性优化问题,目前在求解该问题上主要使用FMINCON函数及群智能算法,但在算法的应用中存在移植性差,难实现,计算时间长等局限性。通过对这些问题的研究,结合现有的参数训练方法提出了基于加速梯度求法的置信规则库参数训练方法,并将其应用在多峰函数、输油管道泄漏检测的置信规则库的参数训练上。以收敛误差、收敛时间和皮尔森相关系数作为衡量指标,对新方法与其他传统方法进行了对比,实验结果表明,新算法在收敛精度和收敛速度上具有更理想的综合效益。
置信規則庫(belief rule base,BRB)的參數訓練問題實質上是一箇帶有約束條件的非線性優化問題,目前在求解該問題上主要使用FMINCON函數及群智能算法,但在算法的應用中存在移植性差,難實現,計算時間長等跼限性。通過對這些問題的研究,結閤現有的參數訓練方法提齣瞭基于加速梯度求法的置信規則庫參數訓練方法,併將其應用在多峰函數、輸油管道洩漏檢測的置信規則庫的參數訓練上。以收斂誤差、收斂時間和皮爾森相關繫數作為衡量指標,對新方法與其他傳統方法進行瞭對比,實驗結果錶明,新算法在收斂精度和收斂速度上具有更理想的綜閤效益。
치신규칙고(belief rule base,BRB)적삼수훈련문제실질상시일개대유약속조건적비선성우화문제,목전재구해해문제상주요사용FMINCON함수급군지능산법,단재산법적응용중존재이식성차,난실현,계산시간장등국한성。통과대저사문제적연구,결합현유적삼수훈련방법제출료기우가속제도구법적치신규칙고삼수훈련방법,병장기응용재다봉함수、수유관도설루검측적치신규칙고적삼수훈련상。이수렴오차、수렴시간화피이삼상관계수작위형량지표,대신방법여기타전통방법진행료대비,실험결과표명,신산법재수렴정도화수렴속도상구유경이상적종합효익。
The problem of training parameters for belief rule base (BRB) is essentially a nonlinear optimization problem with constraints, which is mainly solved by the FMINCON function or the swarm intelligence algorithms. However, these approaches have many shortages, such as poor portability, difficult to be implemented and requiring a large amount of calculation. To solve these problems, this paper proposes a new parameter training approach for BRB using the accelerating of gradient algorithm, which is improved from the existing parameter training methods, and is applied to the parameter training of multimodal function and pipeline leak detection. The proposed approach is compared with other traditional approaches in terms of convergence error, convergence precision and Pearson correlation coefficient in experiment analysis. The results show the better comprehensive benefits of the proposed approach, including convergence accuracy and convergence speed.