化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
8期
3268-3276
,共9页
固化%热解%高性能%热固性%酚醛树脂
固化%熱解%高性能%熱固性%酚醛樹脂
고화%열해%고성능%열고성%분철수지
curing%pyrolysis%high performance%thermosetting%phenol-formaldehyde resin
酚醛树脂作为一种热固性树脂基体具有广泛的应用。为了满足其作为高性能树脂基体在苛刻条件(耐高温和抗氧化)下的使用,进一步提高酚醛树脂的耐热性能并兼顾其工艺性能显得尤为重要。采用含有无机元素的耐热性聚合物(聚硼氮烷)和碳化硼纳米粒子协同改性酚醛树脂的方法,能够克服单独加入碳化硼导致的酚醛树脂固化温度升高的问题。固化动力学分析表明,加入聚硼氮烷的酚醛树脂改性体系,其固化转化率显著高于同温度下酚醛树脂或碳化硼改性酚醛树脂的转化率。同时,聚硼氮烷和碳化硼协同改性酚醛树脂固化物在高温阶段(800~1000℃)的热解稳定性较改性前有大幅度的提高。通过红外光谱分析了不同热解程度下酚醛树脂及其改性物的结构,进一步阐述了聚硼氮烷和碳化硼协同作用对酚醛树脂改性体系固化行为和热解过程的影响机制。上述采用耐热性活性聚合物和碳化硼陶瓷粒子协同改性热固性树脂的方法,有望在高性能复合材料树脂基体中得到运用。
酚醛樹脂作為一種熱固性樹脂基體具有廣汎的應用。為瞭滿足其作為高性能樹脂基體在苛刻條件(耐高溫和抗氧化)下的使用,進一步提高酚醛樹脂的耐熱性能併兼顧其工藝性能顯得尤為重要。採用含有無機元素的耐熱性聚閤物(聚硼氮烷)和碳化硼納米粒子協同改性酚醛樹脂的方法,能夠剋服單獨加入碳化硼導緻的酚醛樹脂固化溫度升高的問題。固化動力學分析錶明,加入聚硼氮烷的酚醛樹脂改性體繫,其固化轉化率顯著高于同溫度下酚醛樹脂或碳化硼改性酚醛樹脂的轉化率。同時,聚硼氮烷和碳化硼協同改性酚醛樹脂固化物在高溫階段(800~1000℃)的熱解穩定性較改性前有大幅度的提高。通過紅外光譜分析瞭不同熱解程度下酚醛樹脂及其改性物的結構,進一步闡述瞭聚硼氮烷和碳化硼協同作用對酚醛樹脂改性體繫固化行為和熱解過程的影響機製。上述採用耐熱性活性聚閤物和碳化硼陶瓷粒子協同改性熱固性樹脂的方法,有望在高性能複閤材料樹脂基體中得到運用。
분철수지작위일충열고성수지기체구유엄범적응용。위료만족기작위고성능수지기체재가각조건(내고온화항양화)하적사용,진일보제고분철수지적내열성능병겸고기공예성능현득우위중요。채용함유무궤원소적내열성취합물(취붕담완)화탄화붕납미입자협동개성분철수지적방법,능구극복단독가입탄화붕도치적분철수지고화온도승고적문제。고화동역학분석표명,가입취붕담완적분철수지개성체계,기고화전화솔현저고우동온도하분철수지혹탄화붕개성분철수지적전화솔。동시,취붕담완화탄화붕협동개성분철수지고화물재고온계단(800~1000℃)적열해은정성교개성전유대폭도적제고。통과홍외광보분석료불동열해정도하분철수지급기개성물적결구,진일보천술료취붕담완화탄화붕협동작용대분철수지개성체계고화행위화열해과정적영향궤제。상술채용내열성활성취합물화탄화붕도자입자협동개성열고성수지적방법,유망재고성능복합재료수지기체중득도운용。
Phenol-formaldehyde resin (PF) has been widely used as an excellent thermosetting resin owing to its toughness, heat tolerance, chemical inertness and good electronic property. For high performance application, especially for expanding its usage in harsh environment demanding superior thermal and oxidation stability, further enhancement of the comprehensive properties is vital. Here, a thermally stable polyborazine (PBZ) and boron carbide ceramic microparticles (B4C) were incorporated simultaneously into the phenolic resin matrix. The curing kinetics and structure evolution of the PF/B4C/PBZ composite were investigated with differential scanning calorimetry (DSC), Fourier transform IR (FTIR) and thermal gravimetric analysis (TGA). Both the curing initiation and peak temperatures of the composite were lowered as a result of the presence of active hydrogen atom of PBZ and the hydrogen bonding among PBZ and PF. In addition, the thermal stability of PF was improved in the temperature range of 800-1000℃, with mass loss decreased from 18.2% to 5.6%, during pyrolysis with the synergistic modification of PBZ and B4C. Furthermore, after carbonization at 1550℃ for 2 h, graphitization of PF was enhanced and interlayer distance decreased from 0.3638 nm to 0.3494 nm due to the presence of PBZ and B4C. The strategy to high performance of PF via the combination of PBZ and B4C is feasible, and it allows a better way to modify the curing behavior without compromise to thermal stability.