化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
8期
2954-2962
,共9页
丝网管%流场调控%对流%传热%实验验证
絲網管%流場調控%對流%傳熱%實驗驗證
사망관%류장조공%대류%전열%실험험증
mesh cylinder%flow field modulation%convection%heat transfer%experimental validation
提出在传热管内插入圆柱状丝网管调控流场进而强化传热的方法。通过在管内同心插入圆柱状丝网管,将流通截面分成中心区和环隙区,流体流经丝网入口处时受到阻力较大,大部分流体流向环隙区,使得速度场受到调控。环隙区与中心区内冷热流体掺混,强化传热。为验证这一思想搭建强制对流换热实验台,以去离子水为工质,Reynolds数为2392~20175,热通量为50.18~282.88 kW·m-2。通过对局部、平均Nusselt数及摩擦压降数据的研究,结果表明:同光管传热相比,插入丝网管后平均Nusselt数提高,传热强化系数为1.21~1.84,且最大强化系数发生在过渡流内。入口段强化效果明显,局部传热强化系数最高可达到2.64。而强化传热的同时摩擦压降增大6.1~10.6倍。同时对该结构的传热强化机理进行分析:流场受到丝网管的调控作用,进而强化传热。
提齣在傳熱管內插入圓柱狀絲網管調控流場進而彊化傳熱的方法。通過在管內同心插入圓柱狀絲網管,將流通截麵分成中心區和環隙區,流體流經絲網入口處時受到阻力較大,大部分流體流嚮環隙區,使得速度場受到調控。環隙區與中心區內冷熱流體摻混,彊化傳熱。為驗證這一思想搭建彊製對流換熱實驗檯,以去離子水為工質,Reynolds數為2392~20175,熱通量為50.18~282.88 kW·m-2。通過對跼部、平均Nusselt數及摩抆壓降數據的研究,結果錶明:同光管傳熱相比,插入絲網管後平均Nusselt數提高,傳熱彊化繫數為1.21~1.84,且最大彊化繫數髮生在過渡流內。入口段彊化效果明顯,跼部傳熱彊化繫數最高可達到2.64。而彊化傳熱的同時摩抆壓降增大6.1~10.6倍。同時對該結構的傳熱彊化機理進行分析:流場受到絲網管的調控作用,進而彊化傳熱。
제출재전열관내삽입원주상사망관조공류장진이강화전열적방법。통과재관내동심삽입원주상사망관,장류통절면분성중심구화배극구,류체류경사망입구처시수도조력교대,대부분류체류향배극구,사득속도장수도조공。배극구여중심구내랭열류체참혼,강화전열。위험증저일사상탑건강제대류환열실험태,이거리자수위공질,Reynolds수위2392~20175,열통량위50.18~282.88 kW·m-2。통과대국부、평균Nusselt수급마찰압강수거적연구,결과표명:동광관전열상비,삽입사망관후평균Nusselt수제고,전열강화계수위1.21~1.84,차최대강화계수발생재과도류내。입구단강화효과명현,국부전열강화계수최고가체도2.64。이강화전열적동시마찰압강증대6.1~10.6배。동시대해결구적전열강화궤리진행분석:류장수도사망관적조공작용,진이강화전열。
A method was proposed to enhance the single phase convective heat transfer. A stainless mesh cylinder was inserted into the tube concentrically to divide its cross section into an annular region and a central region. As the fluid passes the mesh cylinder, most of it enters the annular region because of resistance, modulating the flow field. Hot fluid in the annular region and cold fluid in the central region mix with each other more intensely through the mesh surface, enhancing the heat transfer. The heat transfer and pressure drop characteristics in the vertical upward flow with inserted mesh cylinder were investigated experimentally to validate the method. The mean and local Nusselt numbers and pressure drop data were obtained from the mesh cylinder tube and a smooth tube with water as the working fluid. The Reynolds numbers cover the range of 2392-20175 and the heat flux is in the range of 50.18-282.88 kW·m-2. The experimental results from the smooth tube are validated by using the well known equations in literature. Inserting a mesh cylinder increases the heat transfer and pressure drop considerably compared with the smooth tube. The heat transfer enhancement factors range from 1.21 to 1.84. In the entrance region or thermal developing region, the heat transfer enhancement factor is up to 2.64. Meanwhile, the pressure drop is 6.1-10.6 times larger than that of the smooth tube.