计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
15期
157-163
,共7页
Harris-Laplace%冗余点%尺度不变特征变换(SIFT)描述子%图像配准
Harris-Laplace%冗餘點%呎度不變特徵變換(SIFT)描述子%圖像配準
Harris-Laplace%용여점%척도불변특정변환(SIFT)묘술자%도상배준
Harris-Laplace%redundant points%Scale-Invariant Feature Transform(SIFT)descriptor%image registration
利用Harris-Laplace算法对一幅图像进行多尺度特征点检测时,图像的局部结构在一定的尺度范围内被多次检测到,从而产生冗余点。冗余点不但增加了后续配准的计算量,同时由于这些表示同一局部结构的冗余点在位置和尺度上的差异降低特征匹配精度导致误匹配。通过对表示局部结构的特征点进行选择,提出了Harris-Laplace的改进算法。利用改进Harris-Laplace算法结合SIFT描述子,通过设定最小距离与次最小距离的阈值实现了图像的自动匹配,与原来算法作了大量的对比实验。实验结果表明,该算法不仅具有更好的旋转、光照和尺度不变性还具有获得稳定数量的匹配点的特性。同时,由于该算法相对于原算法在特征检测阶段减少了大量的冗余点,所以提高了图像配准的速度并降低了误匹配。
利用Harris-Laplace算法對一幅圖像進行多呎度特徵點檢測時,圖像的跼部結構在一定的呎度範圍內被多次檢測到,從而產生冗餘點。冗餘點不但增加瞭後續配準的計算量,同時由于這些錶示同一跼部結構的冗餘點在位置和呎度上的差異降低特徵匹配精度導緻誤匹配。通過對錶示跼部結構的特徵點進行選擇,提齣瞭Harris-Laplace的改進算法。利用改進Harris-Laplace算法結閤SIFT描述子,通過設定最小距離與次最小距離的閾值實現瞭圖像的自動匹配,與原來算法作瞭大量的對比實驗。實驗結果錶明,該算法不僅具有更好的鏇轉、光照和呎度不變性還具有穫得穩定數量的匹配點的特性。同時,由于該算法相對于原算法在特徵檢測階段減少瞭大量的冗餘點,所以提高瞭圖像配準的速度併降低瞭誤匹配。
이용Harris-Laplace산법대일폭도상진행다척도특정점검측시,도상적국부결구재일정적척도범위내피다차검측도,종이산생용여점。용여점불단증가료후속배준적계산량,동시유우저사표시동일국부결구적용여점재위치화척도상적차이강저특정필배정도도치오필배。통과대표시국부결구적특정점진행선택,제출료Harris-Laplace적개진산법。이용개진Harris-Laplace산법결합SIFT묘술자,통과설정최소거리여차최소거리적역치실현료도상적자동필배,여원래산법작료대량적대비실험。실험결과표명,해산법불부구유경호적선전、광조화척도불변성환구유획득은정수량적필배점적특성。동시,유우해산법상대우원산법재특정검측계단감소료대량적용여점,소이제고료도상배준적속도병강저료오필배。
Detected corner points using Harris-Laplace in multiple scales cause the problem that the same structure is detected in certain range of scales, which leads to finding many redundant points. Those points increase the complexity of computing in the later corner point description and matching procedure. Meanwhile, the difference of those points in scales and locations also causes mismatch. An improved Harris-Laplace method is proposed, which selects one character-istic point to represent the same local structure. With the improved Harris-Laplace method and SIFT descriptor, through setting the threshold of maximum and second maximum of distance, the auto image registration is realized. The results of many experiments compared with the original method indicate that the improved method not only has better invariant per-formance in image rotation transform illumination change and scale transform, but also can obtain stable matching pairs. Except that, for getting rid of many redundant points in detecting procedure, the consumed time of image registration and mismatch probability are also reduced.