计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
15期
129-135
,共7页
戴经成%汪荣贵%游生福%李想
戴經成%汪榮貴%遊生福%李想
대경성%왕영귀%유생복%리상
多示例学习%在线学习%目标跟踪%随机森林
多示例學習%在線學習%目標跟蹤%隨機森林
다시례학습%재선학습%목표근종%수궤삼림
multiple instance learning%online learning%object tracking%random forest
多示例学习是不同于传统机器学习的一种新的学习模式,近年来被应用于图像检索、文本分类等领域。提出一种基于在线学习的多示例学习算法,将其应用于目标跟踪。该算法通过构造一个在线学习的多示例分类器作为检测器,无需制作大量的样本进行离线的训练,只需在第一帧手动选中目标,便可以自动生成正样本和负样本,并在随后的帧序列中,根据跟踪到的目标自动更新分类器,在跟踪器丢失目标或者目标从场景中消失后,它能够重新检测到目标并更新跟踪器,从而有效地支持了跟踪器跟踪目标。实验证明该方法在背景复杂,光线变化,摄像机抖动等复杂条件下,可以很好地跟踪到目标,且对遮挡具有较好的鲁棒性。
多示例學習是不同于傳統機器學習的一種新的學習模式,近年來被應用于圖像檢索、文本分類等領域。提齣一種基于在線學習的多示例學習算法,將其應用于目標跟蹤。該算法通過構造一箇在線學習的多示例分類器作為檢測器,無需製作大量的樣本進行離線的訓練,隻需在第一幀手動選中目標,便可以自動生成正樣本和負樣本,併在隨後的幀序列中,根據跟蹤到的目標自動更新分類器,在跟蹤器丟失目標或者目標從場景中消失後,它能夠重新檢測到目標併更新跟蹤器,從而有效地支持瞭跟蹤器跟蹤目標。實驗證明該方法在揹景複雜,光線變化,攝像機抖動等複雜條件下,可以很好地跟蹤到目標,且對遮擋具有較好的魯棒性。
다시례학습시불동우전통궤기학습적일충신적학습모식,근년래피응용우도상검색、문본분류등영역。제출일충기우재선학습적다시례학습산법,장기응용우목표근종。해산법통과구조일개재선학습적다시례분류기작위검측기,무수제작대량적양본진행리선적훈련,지수재제일정수동선중목표,편가이자동생성정양본화부양본,병재수후적정서렬중,근거근종도적목표자동경신분류기,재근종기주실목표혹자목표종장경중소실후,타능구중신검측도목표병경신근종기,종이유효지지지료근종기근종목표。실험증명해방법재배경복잡,광선변화,섭상궤두동등복잡조건하,가이흔호지근종도목표,차대차당구유교호적로봉성。
Multiple instance learning is a new mode of learning, which is different from the traditional machine learning. It has been used in the field of image retrieval, text classification in recent years. This paper proposes an online multi-instance learning algorithm, and applies it to the object tracking. The algorithm by constructing an online learning multi-instance classifier as the detector, without making a large number of samples for off-line training, and only needs to manually select the object in the first frame. It can automatically generate the positive samples and negative samples, and in the subse-quent sequence of frames, automatically update the classifier based on tracking target. If the tracker misses the target or the target disappears from the scene, it can re-detect target and update the tracker, so it can effectively support the tracker to track the object. Experiments show that the proposed approach can track the target well in the complex background, the light change, camera jitter and some other complex conditions, and it has a better robustness for the occlusion.