江西师范大学学报(自然科学版)
江西師範大學學報(自然科學版)
강서사범대학학보(자연과학판)
JOURNAL OF JIANGXI NORMAL UNIVERSITY(NATURAL SCIENCES EDITION)
2014年
4期
409-412
,共4页
捕食-食饵模型%平衡解%Holling-IV 型%全局分歧
捕食-食餌模型%平衡解%Holling-IV 型%全跼分歧
포식-식이모형%평형해%Holling-IV 형%전국분기
predator-prey model%steady-state solutions%Holling-IV%global bifurcation
研究了一类带 Holling-IV 型反应函数的捕食-食饵模型在齐次 Neumann 边界条件下的平衡态解的存在性。首先,通过谱分析法得到常数平衡解的稳定性结论;其次,在1维的情况下,利用局部分歧理论得出在常数解处可以产生局部分歧;最后,利用全局分歧理论证明该局部分歧可以延拓为全局分歧,其连通分支伸向无穷。
研究瞭一類帶 Holling-IV 型反應函數的捕食-食餌模型在齊次 Neumann 邊界條件下的平衡態解的存在性。首先,通過譜分析法得到常數平衡解的穩定性結論;其次,在1維的情況下,利用跼部分歧理論得齣在常數解處可以產生跼部分歧;最後,利用全跼分歧理論證明該跼部分歧可以延拓為全跼分歧,其連通分支伸嚮無窮。
연구료일류대 Holling-IV 형반응함수적포식-식이모형재제차 Neumann 변계조건하적평형태해적존재성。수선,통과보분석법득도상수평형해적은정성결론;기차,재1유적정황하,이용국부분기이론득출재상수해처가이산생국부분기;최후,이용전국분기이론증명해국부분기가이연탁위전국분기,기련통분지신향무궁。
The existence of steady-state solutions of a predator-prey model with Holling-IV functional response is studied under homogeneous Neumann boundary condition. Firstly,by the spectral analysis method,the stability of the solution is obtained. Secondly,by means of local bifurcation theory,it is proved that the model bifurcations at the trivial solution in the one dimensional case. Finally,making use of global bifurcation theory,it is showed that the lo-cal bifurcation can be extend to global bifurcation,and the continuum joins up with infinity.