中南民族大学学报(自然科学版)
中南民族大學學報(自然科學版)
중남민족대학학보(자연과학판)
JOURNAL OF SOUTH-CENTRAL UNIVERSITY FOR NATIONALITIES(NATURAL SCIENCE EDITION)
2014年
1期
62-66
,共5页
认知无线电%频谱感知%变分稀疏贝叶斯学习%压缩采样
認知無線電%頻譜感知%變分稀疏貝葉斯學習%壓縮採樣
인지무선전%빈보감지%변분희소패협사학습%압축채양
cognitive radio%spectrum sensing%variational sparse Bayesian learning%compressive sampling
针对稀疏贝叶斯压缩感知算法存在复杂度高、收敛速度慢等缺陷,提出了一种快速变分稀疏贝叶斯学习的频谱检测与定位算法。该算法在原始问题求解过程中增加了辅助变量,消除了原问题模型中未知变量之间耦合度高的问题。并依据稀疏参数的收敛情况,自适应删除不收敛稀疏参数对应的基函数,从而进一步加快了算法的收敛速度。实验结果表明:该算法在收敛速度和频谱检测精度上有显著的改善。
針對稀疏貝葉斯壓縮感知算法存在複雜度高、收斂速度慢等缺陷,提齣瞭一種快速變分稀疏貝葉斯學習的頻譜檢測與定位算法。該算法在原始問題求解過程中增加瞭輔助變量,消除瞭原問題模型中未知變量之間耦閤度高的問題。併依據稀疏參數的收斂情況,自適應刪除不收斂稀疏參數對應的基函數,從而進一步加快瞭算法的收斂速度。實驗結果錶明:該算法在收斂速度和頻譜檢測精度上有顯著的改善。
침대희소패협사압축감지산법존재복잡도고、수렴속도만등결함,제출료일충쾌속변분희소패협사학습적빈보검측여정위산법。해산법재원시문제구해과정중증가료보조변량,소제료원문제모형중미지변량지간우합도고적문제。병의거희소삼수적수렴정황,자괄응산제불수렴희소삼수대응적기함수,종이진일보가쾌료산법적수렴속도。실험결과표명:해산법재수렴속도화빈보검측정도상유현저적개선。
Based upon the fact that sparse Bayesian compressed sensing algorithm has the defects of high complexity and slow convergence speed , a spectrum sensing and location algorithm based on fast variational sparse Bayesian learning is proposed.The algorithm adds some auxiliary variable in the process of solving original problem , which eliminates the high coupling coefficient between the unknown variables in the original model .At the meantime, the algorithm can adaptively delete the basic functions corresponding to un-convergence sparse parameters according to the converging conditions of the sparse parameters , thus leading to the effect that the velocity of convergence is further accelerated .The experimental results show that the algorithm significantly improves the accuracy and speed of sensing .