燃气轮机技术
燃氣輪機技術
연기륜궤기술
GAS TURBINE TECHNOLOGY
2014年
1期
27-31
,共5页
燃气透平%凹槽状叶顶%气膜冷却%数值模拟
燃氣透平%凹槽狀葉頂%氣膜冷卻%數值模擬
연기투평%요조상협정%기막냉각%수치모의
gas turbine%squealer tip%film cooling%numerical simulation
采用数值求解三维Reynolds-Averaged Navier-Stokes(RANS)和k ω紊流模型的方法研究了燃气透平凹槽状叶顶气膜冷却特性。通过比较4种紊流模型的数值结果与GE E 3实验数据,验证了采用标准k ω紊流模型可以有效地模拟叶顶间隙的流动换热特性。计算分析了无气膜冷却时凹槽深度对叶顶间隙流动传热的影响特性。开展了凹槽状叶顶的气膜冷却几何结构参数气膜孔直径、气膜孔间距比、位置和吹风比对叶顶流动传热特性的影响。研究结果表明:无气膜冷却时,在1.5%叶高的叶顶间隙条件下凹槽深度为2%叶高时叶顶平均换热系数最高,凹槽深度继续增加,表面平均换热系数迅速降低。对于凹槽状叶顶气膜冷却特性的研究表明:在气膜孔叶顶中弧线布置方式下,吹风比为1.0时气膜冷却效率最好;在气膜孔叶顶中弧线布置方式和吹风比为1.0时气膜孔直径越大冷却效果越好;在吹风比是1.0时气膜孔布置在靠近吸力面侧时冷却效果最差;在气膜孔叶顶中弧线布置方式和吹风比是1.0时,间距比为5时凹槽状叶顶的气膜冷却效果达到最佳。
採用數值求解三維Reynolds-Averaged Navier-Stokes(RANS)和k ω紊流模型的方法研究瞭燃氣透平凹槽狀葉頂氣膜冷卻特性。通過比較4種紊流模型的數值結果與GE E 3實驗數據,驗證瞭採用標準k ω紊流模型可以有效地模擬葉頂間隙的流動換熱特性。計算分析瞭無氣膜冷卻時凹槽深度對葉頂間隙流動傳熱的影響特性。開展瞭凹槽狀葉頂的氣膜冷卻幾何結構參數氣膜孔直徑、氣膜孔間距比、位置和吹風比對葉頂流動傳熱特性的影響。研究結果錶明:無氣膜冷卻時,在1.5%葉高的葉頂間隙條件下凹槽深度為2%葉高時葉頂平均換熱繫數最高,凹槽深度繼續增加,錶麵平均換熱繫數迅速降低。對于凹槽狀葉頂氣膜冷卻特性的研究錶明:在氣膜孔葉頂中弧線佈置方式下,吹風比為1.0時氣膜冷卻效率最好;在氣膜孔葉頂中弧線佈置方式和吹風比為1.0時氣膜孔直徑越大冷卻效果越好;在吹風比是1.0時氣膜孔佈置在靠近吸力麵側時冷卻效果最差;在氣膜孔葉頂中弧線佈置方式和吹風比是1.0時,間距比為5時凹槽狀葉頂的氣膜冷卻效果達到最佳。
채용수치구해삼유Reynolds-Averaged Navier-Stokes(RANS)화k ω문류모형적방법연구료연기투평요조상협정기막냉각특성。통과비교4충문류모형적수치결과여GE E 3실험수거,험증료채용표준k ω문류모형가이유효지모의협정간극적류동환열특성。계산분석료무기막냉각시요조심도대협정간극류동전열적영향특성。개전료요조상협정적기막냉각궤하결구삼수기막공직경、기막공간거비、위치화취풍비대협정류동전열특성적영향。연구결과표명:무기막냉각시,재1.5%협고적협정간극조건하요조심도위2%협고시협정평균환열계수최고,요조심도계속증가,표면평균환열계수신속강저。대우요조상협정기막냉각특성적연구표명:재기막공협정중호선포치방식하,취풍비위1.0시기막냉각효솔최호;재기막공협정중호선포치방식화취풍비위1.0시기막공직경월대냉각효과월호;재취풍비시1.0시기막공포치재고근흡력면측시냉각효과최차;재기막공협정중호선포치방식화취풍비시1.0시,간거비위5시요조상협정적기막냉각효과체도최가。
The film cooling characteristics of gas turbine blade with squealer tip were numerically investigated using three -dimensional Reynolds-Averaged Navier-Stokes(RANS) and k-ωturbulent model.The availability of the utilized numerical approach with standard k-ωturbulent model for analysis the heat transfer performance of blade tip was demonstrated by comparisons of numerical results with four kind of turbulent model and experimental data .The effect of the squealer tip depth on the heat transfer performance was conducted without consideration of film cooling .The film cooling performance on gas turbine blade with squealer tip was numerically studied at different geometrical parameters of film cooling structure diameter of film cooling hole , spacing ratio and arrangements , as well as blow ratios.The numerical results show that the averaged heat transfer coefficients of blade squealer tip without consideration of film cooling at 1.5%span tip clearance and 2%depth is highest.The averaged heat transfer coefficients of blade squealer tip decreases with in -crease depth.Regarding to the blade squealer tip with film cooling structure , the best film cooling performance of blow ratio with 1.0 for the film cooling camber arrangement is obtained .The film cooling efficiency increases with increasing of the hole diameter at the camber line arrangement and blow ratio with 1.0.The film cooling near the suction side arrangement shows the lowest cooling efficien -cy.The comprehensive best cooling efficiency of film cooling spacing ratio with 5 at the camber line arrangement and blow ratio 1.0 is captured.