南昌大学学报(理科版)
南昌大學學報(理科版)
남창대학학보(이과판)
JOURNAL OF NANCHANG UNIVERSITY(NATURAL SCIENCE)
2014年
1期
13-19
,共7页
亚纯函数%整函数%复微分方程%不动点
亞純函數%整函數%複微分方程%不動點
아순함수%정함수%복미분방정%불동점
meromorphic function%entire function%complex differential equation%fixed|point
研究了二阶线性微分方程f″+A(z)f′+B(z)f=0的非零解f及其一阶、二阶导数f(k)(k=1,2)的不动点性质,这里A(z),B(z)为整函数,得到了当A(z),B(z)满足i(A)<i(B)=p或0<σp(A)<σp(B)<∞或0<σp(A)=σp(B)<∞和0<τp(A)<τp(B)时,有λ-p+1(f-z)=λ-p+1(f′-z)=σp+1(f)=σp(B),(p∈N+),改进了陈宗煊,孙光镐等人的结果。
研究瞭二階線性微分方程f″+A(z)f′+B(z)f=0的非零解f及其一階、二階導數f(k)(k=1,2)的不動點性質,這裏A(z),B(z)為整函數,得到瞭噹A(z),B(z)滿足i(A)<i(B)=p或0<σp(A)<σp(B)<∞或0<σp(A)=σp(B)<∞和0<τp(A)<τp(B)時,有λ-p+1(f-z)=λ-p+1(f′-z)=σp+1(f)=σp(B),(p∈N+),改進瞭陳宗煊,孫光鎬等人的結果。
연구료이계선성미분방정f″+A(z)f′+B(z)f=0적비영해f급기일계、이계도수f(k)(k=1,2)적불동점성질,저리A(z),B(z)위정함수,득도료당A(z),B(z)만족i(A)<i(B)=p혹0<σp(A)<σp(B)<∞혹0<σp(A)=σp(B)<∞화0<τp(A)<τp(B)시,유λ-p+1(f-z)=λ-p+1(f′-z)=σp+1(f)=σp(B),(p∈N+),개진료진종훤,손광호등인적결과。
The properties of the fixed-point of solution f(0)was investigated,together with its derivative f (k)(k=1,2)of second order linear differential equation f″+A(z)f′+B(z)f=0 where A(z),B(z)deno-ted entire functions.We obtained thatλ-p+1 (f -z)=λ-p+1 (f′-z)=σp+1 (f)=σp (B),(p ∈N + )when A (z),B(z)satisfied either i(A)<i(B)=p or 0<σp (A)<σp (B)<∞ or 0<σp (A)=σp (B)<∞ and 0<τp (A)<τp (B).The theorems of this paper would improve the previous results given by Chen,Shon.