雷达学报
雷達學報
뢰체학보
JOURNAL OF RADARS
2014年
1期
28-34
,共7页
许丽颖%李世强%邓云凯%王宇
許麗穎%李世彊%鄧雲凱%王宇
허려영%리세강%산운개%왕우
极化干涉合成孔径雷达(PolInSAR)%整体最小二乘法(TLS)%树高反演%随机散射体模型(RVoG)
極化榦涉閤成孔徑雷達(PolInSAR)%整體最小二乘法(TLS)%樹高反縯%隨機散射體模型(RVoG)
겁화간섭합성공경뢰체(PolInSAR)%정체최소이승법(TLS)%수고반연%수궤산사체모형(RVoG)
Polarimetric Interferometry SAR (PolInSAR)%Total Least Squares (TLS)%Forest height inversion%Random Volume over Ground (RVoG)
利用极化干涉合成孔径雷达(Polarimetric Interferometry SAR, PolInSAR)数据反演森林参数问题为当前PolInSAR 研究的热点问题。经典的森林参数反演算法是基于随机散射体模型(Random Volume over Ground, RVoG)的阶段反演算法,该算法中直线拟合误差和体散射估计误差会严重影响反演精度。为了提高树高估计精度,该文使用整体最小二乘法直线拟合得到更精确的地表相位估计结果,并提出以Gamma函数为线性度量自适应地估计体散射去相干,得到了改进的PolInSAR三阶段反演算法,实验结果表明改进算法可靠有效。
利用極化榦涉閤成孔徑雷達(Polarimetric Interferometry SAR, PolInSAR)數據反縯森林參數問題為噹前PolInSAR 研究的熱點問題。經典的森林參數反縯算法是基于隨機散射體模型(Random Volume over Ground, RVoG)的階段反縯算法,該算法中直線擬閤誤差和體散射估計誤差會嚴重影響反縯精度。為瞭提高樹高估計精度,該文使用整體最小二乘法直線擬閤得到更精確的地錶相位估計結果,併提齣以Gamma函數為線性度量自適應地估計體散射去相榦,得到瞭改進的PolInSAR三階段反縯算法,實驗結果錶明改進算法可靠有效。
이용겁화간섭합성공경뢰체(Polarimetric Interferometry SAR, PolInSAR)수거반연삼림삼수문제위당전PolInSAR 연구적열점문제。경전적삼림삼수반연산법시기우수궤산사체모형(Random Volume over Ground, RVoG)적계단반연산법,해산법중직선의합오차화체산사고계오차회엄중영향반연정도。위료제고수고고계정도,해문사용정체최소이승법직선의합득도경정학적지표상위고계결과,병제출이Gamma함수위선성도량자괄응지고계체산사거상간,득도료개진적PolInSAR삼계단반연산법,실험결과표명개진산법가고유효。
Employing Polarimetric Interferometry Synthetic Aperture Radar (PolInSAR) data to inverse forest parameters is a hot topic in the research field of PolInSAR. The typical forest parameter inversion algorithm is the three-stage inversion algorithm based on Random Volume over Ground (RVoG) model. The errors of linear fitting and volume scattering correlation estimation are the major factors for parameter estimation accuracy. In this paper, straight line fitting employing the total least squares method is used to estimate the ground phase. Then, the Gamma function is applied as the line measure to adaptively estimate the volume scattering correlation. The improved three-stage inversion algorithm with PolInSAR is presented. The experiment result proves the forest parameters inversion result is accurate and reliable.